37,123 research outputs found

    DISCHARGE OXIDE STORAGE CAPACITY AND VOLTAGE LOSS IN LI-AIR BATTERY

    Get PDF
    Air cathodes, where oxygen reacts with Li ions and electrons with discharge oxide stored in their pore structure, are often considered as the most challenging component in nonaqueous Lithium-air batteries. In non-aqueous electrolytes, discharge oxides are usually insoluble and hence precipitate at local reaction site, raising the oxygen transport resistance in the pore network. Due to their low electric conductivity, their presence causes electrode passivation. This study aims to investigate the air cathode's performance through analytically obtaining oxygen profiles, modeling electrode passivation, evaluating the transport polarization raised by discharge oxide precipitate, and developing analytical formulas for insoluble Li oxides storage capacity. The variations of cathode quantities, including oxygen content and temperature, are evaluated and related to a single dimensionless parameter - the Damköhler Number (Da). An approximate model is developed to predict discharge voltage loss, along with validation against two sets of experimental data. Air cathode properties, including tortuosity, surface coverage factor and the Da number, and their effects on the cathode's capacity of storing Li oxides are formulated and discussed

    Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model

    Get PDF
    In general, there are no long-term meteorological or hydrological data available for karst river basins. The lack of rainfall data is a great challenge that hinders the development of hydrological models. Quantitative precipitation estimates (QPEs) based on weather satellites offer a potential method by which rainfall data in karst areas could be obtained. Furthermore, coupling QPEs with a distributed hydrological model has the potential to improve the precision of flood predictions in large karst watersheds. Estimating precipitation from remotely sensed information using an artificial neural network-cloud classification system (PERSIANN-CCS) is a type of QPE technology based on satellites that has achieved broad research results worldwide. However, only a few studies on PERSIANN-CCS QPEs have occurred in large karst basins, and the accuracy is generally poor in terms of practical applications. This paper studied the feasibility of coupling a fully physically based distributed hydrological model, i.e., the Liuxihe model, with PERSIANN-CCS QPEs for predicting floods in a large river basin, i.e., the Liujiang karst river basin, which has a watershed area of 58 270 km-2, in southern China. The model structure and function require further refinement to suit the karst basins. For instance, the sub-basins in this paper are divided into many karst hydrology response units (KHRUs) to ensure that the model structure is adequately refined for karst areas. In addition, the convergence of the underground runoff calculation method within the original Liuxihe model is changed to suit the karst water-bearing media, and the Muskingum routing method is used in the model to calculate the underground runoff in this study. Additionally, the epikarst zone, as a distinctive structure of the KHRU, is carefully considered in the model. The result of the QPEs shows that compared with the observed precipitation measured by a rain gauge, the distribution of precipitation predicted by the PERSIANN-CCS QPEs was very similar. However, the quantity of precipitation predicted by the PERSIANN-CCS QPEs was smaller. A post-processing method is proposed to revise the products of the PERSIANN-CCS QPEs. The karst flood simulation results show that coupling the post-processed PERSIANN-CCS QPEs with the Liuxihe model has a better performance relative to the result based on the initial PERSIANN-CCS QPEs. Moreover, the performance of the coupled model largely improves with parameter re-optimization via the post-processed PERSIANN-CCS QPEs. The average values of the six evaluation indices change as follows: the Nash-Sutcliffe coefficient increases by 14 %, the correlation coefficient increases by 15 %, the process relative error decreases by 8 %, the peak flow relative error decreases by 18 %, the water balance coefficient increases by 8 %, and the peak flow time error displays a 5 h decrease. Among these parameters, the peak flow relative error shows the greatest improvement; thus, these parameters are of page1506 the greatest concern for flood prediction. The rational flood simulation results from the coupled model provide a great practical application prospect for flood prediction in large karst river basins

    Effect of edge decoration on the energy spectrum of semi-infinite lattices

    Full text link
    Analytical studies of the effect of edge decoration on the energy spectrum of semi-infinite one-dimensional (1D) lattice chain with Peierls phase transition and zigzag edged graphene (ZEG) are presented by means of transfer matrix method, in the frame of which the sufficient and necessary conditions for the existence of the edge states are determined. For 1D lattice chain, the zero-energy edge state exists when Peierls phase transition happens regardless whether the decoration exists or not, while the non-zero-energy edge states can be induced and manipulated through adjusting the edge decoration. On the other hand, the semi-infinite ZEG model with nearest-neighbor interaction can be mapped into the 1D lattice chain case. The non-zero-energy edge states can be induced by the decoration as well, and we can obtain the condition of the decoration on the edge for the existence of the novel edge states.Comment: 6 pages,4 figure

    Inhibition Effects of Scorpion Venom Extracts (Buthus matensii karsch) on the Growth of Human Breast Cancer MCF-7 cells

    Get PDF
    Background: To observe the inhibition effects of the Buthus matensii Karsch (BmK) scorpion venom extracts on the growth of human breastcancer MCF-7 cells, and to explore its mechanisms.Methods: Two common tumor cells (SMMC7721, MCF-7) were examined for the one which wasmore sensitivity to scorpion venom by MTT method. Cell cycle was determined by flow cytometry. Immunocytochemistry was applied to detect apoptosis-related protein Caspase-3 and Bcl-2 levels, while the expression of cell cycle-related protein Cyclin D1 was shown byWestern blotting.Results: Our data indicated that MCF-7 was the more sensitive cell line to scorpion venom. The extracts of scorpion venom could inhibit the growth and proliferation of MCF-7 cells. Furthermore, the extract of scorpion venom induced apoptosis through Caspase-3 up-regulation while Bcl-2 down-regulation in MCF-7 cells. In addition, the extracts of scorpion venom blocked the cells from G0/G1 phase to S phase and decreased cell cycle-related protein Cyclin D1 level after drug intervention compared with the negative control group.Conclusions: These results showed that the BmK scorpion venom extracts could inhibit the growth of MCF-7 cells by inducing apoptosis and blocking cell cycle in G0/G1 phase. The BmK scorpion venom extracts will be very valuable for the treatment of breast cancer.Key words: Apoptosis, Buthus matensii Karsch, cell cycle, MCF-7, scorpion venomAbbreviations: SVE: Scorpion venom extracts ; FBS: Fetal bovine serum; MTT: 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide;BmK ; Buthus matensii Karsch; PBS: Phosphate buffered saline; PI: Propidium iodide; FCM: Flow cytometry; SDS-PAGE: Sodium dodecylsulfate polyacrylamide gel electrophoresis; DAB: Diaminobenzidine; B-NHL: B-cell non-Hodgkin's tumors; DED: Death effector domain ; PTP:Permeability transition pores ; CKIs: Cyclin-dependent kinases inhabitors; pRB: Retinoblastoma tumor suppressor protein ; CDK: Cyclin-dependent kinase

    Early iron objects of southwest China: a case study of iron objects excavated from Qiaogoutou cemetery site, Sichuan Province

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.Iron objects excavated from the Qiaogoutou cemetery site provides an opportunity to study iron-making technology during the late Warring States period and the early Western Han dynasty in southwest China. Five metallographic samples were prepared and analysed. The results are discussed in relation to other studies of iron objects discovered in southwest China

    Preliminary study on the inducement effect of colchicine during microsporogenesis of Ginkgo biloba L.

    Get PDF
    This is the first report of colchicine treatment effect on microsporogenesis of Ginkgo biloba L, By high performance liquid chromatography (HPLC) analysis, colchicine was detected in microsporocyte inclusion from colchicine-treated microsporangium and microsporocyte of G. biloba, The change amount of colchicine was detected in mixture liquid after the protoplasm of G. biloba was co-cultured with colchicine by different conditions. Fixed with Carnoy's fluid and stained with improved phenol fuchsin, the development of colchicine-treated microsporogenesis could be examined with microscope. The results are as follows: The colchicine could intrude into treated microsporangium and microsporocyte, but intruded amount of colchicine was different when treatment conditions were different; the change of colchicine content in co-cultured mixtures liquid was few; and there were high frequencies of development tardiness in colchicine-induced microsporangium (more than 70%), but only a few dyads and triads were detected in meiotic products (less than 10%). These observations suggest that 2n pollen can be induced by colchicine but treatment conditions and slowing development of colchicine-treated microsporocyte may affect the inducement effect of colchicines.Key words: Ginkgo biloba L., microsporogenesis, colchicine, 2n pollen, high performance liquid chromatography (HPLC)

    Determination of Dark Matter Halo Mass from Dynamics of Satellite Galaxies

    Full text link
    We show that the mass of a dark matter halo can be inferred from the dynamical status of its satellite galaxies. Using 9 dark-matter simulations of halos like the Milky Way (MW), we find that the present-day substructures in each halo follow a characteristic distribution in the phase space of orbital binding energy and angular momentum, and that this distribution is similar from halo to halo but has an intrinsic dependence on the halo formation history. We construct this distribution directly from the simulations for a specific halo and extend the result to halos of similar formation history but different masses by scaling. The mass of an observed halo can then be estimated by maximizing the likelihood in comparing the measured kinematic parameters of its satellite galaxies with these distributions. We test the validity and accuracy of this method with mock samples taken from the simulations. Using the positions, radial velocities, and proper motions of 9 tracers and assuming observational uncertainties comparable to those of MW satellite galaxies, we find that the halo mass can be recovered to within ∼\sim40%. The accuracy can be improved to within ∼\sim25% if 30 tracers are used. However, the dependence of the phase-space distribution on the halo formation history sets a minimum uncertainty of ∼\sim20% that cannot be reduced by using more tracers. We believe that this minimum uncertainty also applies to any mass determination for a halo when the phase space information of other kinematic tracers is used.Comment: Accepted for publication in ApJ, 18 pages, 13 figure

    Preface

    Get PDF
    • …
    corecore