952 research outputs found
Addressless: A New Internet Server Model to Prevent Network Scanning
Eliminating unnecessary exposure is a principle of server security. The huge
IPv6 address space enhances security by making scanning infeasible, however,
with recent advances of IPv6 scanning technologies, network scanning is again
threatening server security. In this paper, we propose a new model named
addressless server, which separates the server into an entrance module and a
main service module, and assigns an IPv6 prefix instead of an IPv6 address to
the main service module. The entrance module generates a legitimate IPv6
address under this prefix by encrypting the client address, so that the client
can access the main server on a destination address that is different in each
connection. In this way, the model provides isolation to the main server,
prevents network scanning, and minimizes exposure. Moreover it provides a novel
framework that supports flexible load balancing, high-availability, and other
desirable features. The model is simple and does not require any modification
to the client or the network. We implement a prototype and experiments show
that our model can prevent the main server from being scanned at a slight
performance cost
Synergistic effect of phosphodiesterase 4 inhibitor and serum on migration of endotoxin-stimulated macrophages.
Macrophage migration is an essential step in host defense against infection and wound healing. Elevation of cAMP by inhibiting phosphodiesterase 4 (PDE4), enzymes that specifically degrade cAMP, is known to suppress various inflammatory responses in activated macrophages, but the role of PDE4 in macrophage migration is poorly understood. Here we show that the migration of Raw 264.7 macrophages stimulated with LPS was markedly and dose-dependently induced by the PDE4 inhibitor rolipram as assessed by scratch wound healing assay. Additionally, this response required the involvement of serum in the culture medium as serum starvation abrogated the effect. Further analysis revealed that rolipram and serum exhibited synergistic effect on the migration, and the influence of serum was independent of PDE4 mRNA expression in LPS-stimulated macrophages. Moreover, the enhanced migration by rolipram was mediated by activating cAMP/exchange proteins directly activated by cAMP (Epac) signaling, presumably via interaction with LPS/TLR4 signaling with the participation of unknown serum components. These results suggest that PDE4 inhibitors, together with serum components, may serve as positive regulators of macrophage recruitment for more efficient pathogen clearance and wound repair
Low-temperature sintering, dielectric performance, and far-IR reflectivity spectrum of a lightweight NaCaVO4 with good chemical compatibility with silver
As one of the candidates of low-temperature cofired ceramics (LTCC), the sintering behavior, dielectric properties, and silver chemical compatibility of NaCaVO4 were studied. The bulk ceramic samples were densified well at a low sintering temperature of 720 oC with an optimal bulk density of 2.87 g/cm3. Excellent microwave dielectric properties with a low relative permittivity εr ~ 9.9, a high quality factor Q × f ~ 31,600 GHz, and a temperature coefficient of resonance frequency τf ~ -66.5 ppm/°C were achieved at 11.5 GHz. The far infrared reflectivity spectra revealed the intrinsic dielectric properties (relative permittivity of 8.34 and dielectric loss of 2.7×10-4) are comparable to the measured values. The absence of chemical reaction between NaCaVO4 and silver at firing temperature, evidenced by X-ray diffraction and energy dispersive spectroscopy indicated the potential prospect for LTCC application. Furthermore, the very low density of NaCaVO4 opens up an avenue for its potential applications in light-weight devices
Generation of photons with extremely large orbital angular momenta
Vortex photons, which carry large intrinsic orbital angular momenta
(OAM), have significant applications in nuclear, atomic, hadron, particle and
astro-physics, but their production remains unclear. In this work, we
investigate the generation of such photons from nonlinear Compton scattering of
circularly polarized monochromatic lasers on vortex electrons. We develop a
quantum radiation theory for ultrarelativistic vortex electrons in lasers by
using the harmonics expansion and spin eigenfunctions, which allows us to
explore the kinematical characteristics, angular momentum transfer mechanisms,
and formation conditions of vortex photons. The multiphoton absorption
of electrons enables the vortex photons, with fixed polarizations and
energies, to exist in mixed states comprised of multiple harmonics. Each
harmonic represents a vortex eigenmode and has transverse momentum broadening
due to transverse momenta of the vortex electrons. The large topological
charges associated with vortex electrons offer the possibility for
photons to carry adjustable OAM quantum numbers from tens to thousands of
units, even at moderate laser intensities. photons with large OAM and
transverse coherence length can assist in influencing quantum selection rules
and extracting phase of the scattering amplitude in scattering processes.Comment: 7 pages, 4 figure
Prognostic and therapeutic significance of microbial cell-free DNA in plasma of people with acutely decompensated cirrhosis
BACKGROUND AND AIMS: Although the effect of bacterial infection on cirrhosis has been well-described, the effect of non-hepatotropic virus (NHV) infection is unknown. This study evaluated the genome fragments of circulating microorganisms using metagenomic next-generation sequencing (mNGS) in cirrhosis patients with acute decompensation (AD), focusing on NHVs and related the findings to clinical outcomes. METHODS: Plasma mNGS was performed in 129 cirrhosis patients with AD in study cohort. Ten healthy volunteers and 20, 39, and 81 patients with stable cirrhosis, severe sepsis and hematological malignancies, respectively, were enrolled as controls. Validation assays for human cytomegalovirus (CMV) reactivation in a validation cohort (n = 58) were performed and exploratory treatment instituted. RESULTS: In study cohort, 188 microorganisms were detected in 74.4% (96/129) patients, including viruses (58.0%), bacteria (34.1%), fungi (7.4%) and chlamydia (0.5%). Patients with AD had an NHV signature, and CMV was the most frequent NHV, which correlated with the clinical effect of empirical antibiotic treatment, progression to acute-on-chronic liver failure (ACLF), and 90-day mortality. The NHV signature in ACLF patients was similar to patients with sepsis and hematological malignancies. The treatable NHV, CMV was detected in 24.1% (14/58) patients in the validation cohort. Of the 14 cases with detectable CMV by mNGS, 9 were further validated by DNA RT-PCR or pp65 antigenemia testing. Three patients with CMV reactivation received ganciclovir therapy in exploratory manner with clinical resolutions. CONCLUSIONS: The results of this study suggests that NHVs may have a pathogenic role in complicating the course of AD. Further validation is needed to define whether this should be incorporated in the routine management of AD patients. IMPACT AND IMPLICATIONS: ●Cirrhosis patients with acute decompensation have a non-hepatotropic virus (NHV) signature, which is similar to that in sepsis and hematological malignancies patients. ●The detected viral signature had clinical correlates, including clinical efficacy of empirical antibiotic treatment, progression to acute-on-chronic liver failure and short-term mortality. ●The treatable NHV, CMV reactivation may be involved in the clinical outcomes of decompensated cirrhosis. ●Routine screening for NHVs, especially CMV, may be useful for the management of patients with acutely decompensated cirrhosis
The Dlk1-Gtl2 Locus Preserves LT-HSC Function by Inhibiting the PI3K-mTOR Pathway to Restrict Mitochondrial Metabolism
The mammalian imprinted Dlk1-Gtl2 locus produces multiple non-coding RNAs (ncRNAs) from the maternally inherited allele, including the largest miRNA cluster in the mammalian genome. This locus has characterized functions in some types of stem cell, but its role in hematopoietic stem cells (HSCs) is unknown. Here, we show that the Dlk1-Gtl2 locus plays a critical role in preserving long-term repopulating HSCs (LT-HSCs). Through transcriptome profiling in 17 hematopoietic cell types, we found that ncRNAs expressed from the Dlk1-Gtl2 locus are predominantly enriched in fetal liver HSCs and the adult LT-HSC population and sustain long-term HSC functionality. Mechanistically, the miRNA mega-cluster within the Dlk1-Gtl2 locus suppresses the entire PI3K-mTOR pathway. This regulation in turn inhibits mitochondrial biogenesis and metabolic activity and protects LT-HSCs from excessive reactive oxygen species (ROS) production. Our data therefore show that the imprinted Dlk1-Gtl2 locus preserves LT-HSC function by restricting mitochondrial metabolism
Bright attosecond gamma-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets
Attosecond light sources have the potential to open up new avenues in ultrafast science. However, the photon energies achieveable using existing generation schemes are limited to the keV range. Here we propose and numerically demonstrate an all-optical mechanism for the generation of bright MeV attosecond γ-photon beams with desirable angular momentum. Using a circularly-polarized Laguerre-Gaussian laser pulse focused onto a cone-foil target, dense attosecond bunches (. 170as) of electrons are produced. The electrons interact with the laser pulse which is reflected by a plasma mirror, producing ultra-brilliant (∼ 1023photons/s/mm2/mrad2/0.1%BW) multi-MeV (Eγ,max > 30MeV) isolated attosecond (. 260as) γ-ray pulse trains. Moreover, the angular momentum is transferred to γ-photon beams via nonlinear Compton scattering of ultra-intense tightly-focused laser pulse by energetic electrons. Such brilliant attosecond γ-photon source would provide new possibilities in the attosecond nuclear science
Identification and characterization of novel amphioxus microRNAs by Solexa sequencing
An analysis of amphioxus miRNAs suggests an expansion of miRNAs played a key role in the evolution of chordates to vertebrate
First-principles study of electronic structures and optical properties of Cu, Ag, and Au-doped anatase TiO2
We perform first-principles calculations to investigate the band structure,
density of states, optical absorption, and the imaginary part of dielectric
function of Cu, Ag, and Au-doped anatase TiO2 in 72 atoms systems. The
electronic structure results show that the Cu incorporation can lead to the
enhancement of d states near the uppermost of valence band, while the Ag and Au
doping cause some new electronic states in band gap of TiO2. Meanwhile, it is
found that the visible optical absorptions of Cu, Ag, and Au-doped TiO2, are
observed by analyzing the results of optical properties,.which locate in the
region of 400-1000 nm. The absorption band edges of Cu, Ag, and Au-doped TiO2
shift to the long wavelength region compared with the pure TiO2. Furthermore,
according to the calculated results, we propose the optical transition
mechanisms of Cu, Ag, and Au-doped TiO2, respectively. Our results show that
the visible light response of TiO2 can be modulated by substitutional doping of
Cu, Ag, and Au.Comment: 12 pages, 6 figures, 43 reference
Ion acoustic shock wave formation and ion acceleration in the interactions of pair jets with electron–ion plasmas
Astrophysical jets are ubiquitous in the universe and often associated with compact objects, and their interactions with the ambient medium not only dissipate their own energy but also provide ideal circumstances for particle acceleration. By means of theoretical analysis and particle-in-cell simulations, here we study the ion acoustic shock wave (IASW) formation and consequent ion acceleration when electron-positron (e - e +) jets are injected into ambient electron-ion plasmas. It is found that the Buneman instability can be excited first, which induces the formation of an ion acoustic wave (IAW). As the amplitude of the IAW increases, its waveform is steepened and subsequently an IASW is formed. Some ions in the ambient plasmas will be reflected when they encounter the IASW, and thus can be accelerated to form an energetic ion beam. For an initial e - e + jet with the Lorentz factor 3 0 = 100 and the ion-electron mass ratio m i /m e = 1836, the ions can be accelerated up to 580 MeV. This study deepens our understanding of the fireball model of gamma-ray bursts, the shock model of pulsar wind nebulae, the origin of cosmic rays, and other related astrophysical processes
- …