4,982 research outputs found

    Macrophage migration inhibitory factor (MIF) family in arthropods : Cloning and expression analysis of two MIF and one D-dopachrome tautomerase (DDT) homologues in Mud crabs, Scylla paramamosain

    Get PDF
    Acknowledgements This research was supported by grants from the National Natural Science Foundation of China (Nos. 31172438 and U1205123), the Natural Science Foundation of Fujian Province (No. 2012J06008 and 201311180002) and the projects-sponsored by SRF. TW received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Peer reviewedPostprin

    Improvements to enhance robustness of third-order scale-independent WENO-Z schemes

    Full text link
    Although there are many improvements to WENO3-Z that target the achievement of optimal order in the occurrence of the first-order critical point (CP1), they mainly address resolution performance, while the robustness of schemes is of less concern and lacks understanding accordingly. In light of our analysis considering the occurrence of critical points within grid intervals, we theoretically prove that it is impossible for a scale-independent scheme that has the stencil of WENO3-Z to fulfill the above order achievement, and current scale-dependent improvements barely fulfill the job when CP1 occurs at the middle of the grid cell. In order to achieve scale-independent improvements, we devise new smoothness indicators that increase the error order from 2 to 4 when CP1 occurs and perform more stably. Meanwhile, we construct a new global smoothness indicator that increases the error order from 4 to 5 similarly, through which new nonlinear weights with regard to WENO3-Z are derived and new scale-independents improvements, namely WENO-ZES2 and -ZES3, are acquired. Through 1D scalar and Euler tests, as well as 2D computations, in comparison with typical scale-dependent improvement, the following performances of the proposed schemes are demonstrated: The schemes can achieve third-order accuracy at CP1 no matter its location in the stencil, indicate high resolution in resolving flow subtleties, and manifest strong robustness in hypersonic simulations (e.g., the accomplishment of computations on hypersonic half-cylinder flow with Mach numbers reaching 16 and 19, respectively, as well as essentially non-oscillatory solutions of inviscid sharp double cone flow at M=9.59), which contrasts the comparative WENO3-Z improvement

    Modeling the Light Curves of the Luminous Type Ic Supernova 2007D

    Full text link
    SN~2007D is a nearby (redshift z=0.023146z = 0.023146), luminous Type Ic supernova (SN) having a narrow light curve (LC) and high peak luminosity. Previous research based on the assumption that it was powered by the 56^{56}Ni cascade decay suggested that the inferred 56^{56}Ni mass and the ejecta mass are 1.5\sim 1.5M_{\odot} and 3.5\sim 3.5M_{\odot}, respectively. In this paper, we employ some multiband LC models to model the RR-band LC and the color (VRV-R) evolution of SN~2007D to investigate the possible energy sources powering them. We find that the pure 56^{56}Ni model is disfavored; the multiband LCs of SN~2007D can be reproduced by a magnetar whose initial rotational period P0P_{0} and magnetic field strength BpB_p are 7.280.21+0.217.28_{-0.21}^{+0.21} (or 9.000.42+0.329.00_{-0.42}^{+0.32}) ms and 3.100.35+0.36×10143.10_{-0.35}^{+0.36}\times 10^{14} (or 2.810.44+0.43×10142.81_{-0.44}^{+0.43}\times 10^{14}) G, respectively. By comparing the spectrum of SN~2007D with that of some superluminous SNe (SLSNe), we find that it might be a luminous SN like several luminous ``gap-filler" optical transients that bridge ordinary and SLSNe, rather than a genuine SLSN.Comment: 11 pages, 5 figures, 1 table, accepted for publication in Ap
    corecore