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An Ontology-Independent Representation
Learning for Similar Disease Detection Based on

Multi-layer Similarity Network
Ruiqi Qin, Lei Duan, Huiru Zheng, Jesse Li-Ling, Kaiwen Song and Yidan Zhang

Abstract—To identify similar diseases has significant implications for revealing the etiology and pathogenesis of diseases and further
research in the domain of biomedicine. Currently most methods for the measurement of disease similarity utilize either associations of
ontological disease concepts or functional interactions between disease-related genes. These methods are heavily dependent on the
ontology, which are not always available, and the selection of datasets. Moreover, many methods suffer from a drawback that they only
use a single metric to evaluate disease similarity from an individual data source, which may result in biased conclusions without
consideration of other aspects. In this study, we proposed a novel ontology-independent framework, namely RADAR, for learning
representations for diseases to deduce their similarities from an integrative perspective. By leveraging the associations between
diseases and disease-related biomedical entities, a disease similarity network was built under various metrics. Then a multi-layer
disease similarity network was constructed by integrating multiple disease similarity networks derived from multiple data sources,
where the representation learning was derived to provide a comprehensive evaluation of disease similarities. The performance of
RADAR was assessed by a benchmark disease set and 100 random disease sets. Experimental results demonstrated that RADAR
can detect similar diseases effectively.

Index Terms—disease similarity, disease information network, representation learning, multi-layer similarity network
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1 INTRODUCTION

KNOWLEDGE of how various diseases are related can
facilitate deepening the understanding of their etiology

and pathogenesis. Theoretically, diseases may be related
from the following aspects:

• Phenotypically: this is exactly how it happens in
clinics - for every new patient, doctors will try to
give it a diagnosis based on his or her phenotypical
similarity (in symptoms and signs) to a well-defined
disease.

• Genetically: allelic disorders are genetic disorders
that have different phenotype but are caused by
different mutations in the same gene. I-cell disease
(ML II) and pseudo-Hurler polydystrophy (ML III)
are a pair of examples. They are both caused by
mutations in GNPTAB gene, with I-cell being more
severe and presenting earlier.

• At molecular level: some diseases, though with
drastically different clinical feature and different
causative genes, are related by sharing the same
molecular pathway. For instance, phenylketonuria,
goitrous cretinism, albinism, tyrosinosis, alkap-
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tonuria are all caused by defects of phenylalanine
metabolism.

With large amount of data generated from medical lit-
erature and molecular biology research, there is no doubt
that many relationships between diseases are await to be
discovered.

To detect disease similarity has made significant contri-
bution to the discovery of relationships among many other
biomedical data for further research. For example, the dis-
ease similarity has been used to infer the relationship among
microRNAs [1], [2], to explore the relationship among long
non-coding RNAs [3], [4], [5], [6], and for the prediction of
therapeutic drugs for diseases [7], [8], [9].

Typically, there are two queries w.r.t. similar diseases:

• Top-k query: to search top-k most similar diseases
with respect to a given disease. Such query can be
that, for example, which ten diseases are most similar
to Alzheimer’s disease in a given disease set?

• Similar pair query: to discover the most similar disease
pairs from a given disease set. For example, a similar
pair query can be that: which pairwise diseases are
most similar to each other in a given disease set?

Various aspects including pathogenesis and phenotypes
can be exploited to compute the similarity of pairwise
diseases. Current methods for the measurement of disease
similarities may be classified into two categories:

• Semantics-based: the disease similarity is computed
by measuring the similarity between the disease-
associated ontological terms. Based on the informa-
tion theory, the concept of information theory (IC) was
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proposed and has been widely used for measuring
the semantic similarity of ontological terms. For ex-
ample, Resnik et al [10] used the “is a” relationship
between terms as the basis of similarity computation,
and Lin et al [11] considered both the commonality
and difference between terms based on IC. Wang et
al [12] focused on the semantic similarity of Gene
Ontology (GO) [13] terms, and first used two types
of relationships as a hybrid measurement to com-
pute such similarity. Ever since the emergence of
Disease Ontology (DO) [14], which is the first stan-
dardized ontology for human diseases based on the
disease terms collected from multiple sources such
as Medical Subject Headings (MeSH) [15] and Online
Mendelian Inheritance in Man (OMIM) [16], methods
have been proposed to calculate disease similarity
based on DO terms, such as the system DOSim [17],
where ten representative semantic similarity mea-
surements of ontological terms are implemented.

• Semantics + Function-based: Knowledge has been 
found that the genome is closely associated to dis-
eases and can be used to reveal relationships be-
tween diseases in molecular level. Methods have 
been proposed to infer disease similarity by assessing 
disease-related genes, such as by the number of 
shared genes [18]. Recently, many researches utilize 
both DO and gene functional associations to enhance 
the measurement of disease similarity. For example, 
SemFunSim [8] obtained the disease similarity by two 
parts, one part measured by the weight value of 
disease-related genes in a weighted gene interaction 
network from HumanNet [19], the other part obtained 
from the semantic relationships between pairwise 
diseases based on DO terms. The similar idea was 
adopted by InfDisSim [20] and another method [21], 
which combined the disease functional similarity 
derived from [8] with the disease semantic similarity 
derived from [12].

However, it is worth noting that three limitations are
commonly associated with the methods mentioned above:
(1) all of them compute disease similarity by leveraging
some quantitative information about diseases and disease-
related biomedical entities, while the fact is that the precise
numerical data describing their relationships are not always
available; (2) many of these methods measure the disease
similarity only by a single metric or only from a single
data source, while the fact is that results tend to differ
under different metrics or with different sources, leading to
biased conclusion that lack of comprehensive assessment;
(3) most of the above methods are limited in their strong
dependence on the ontology (DO or GO) when computing
the semantic similarity for diseases, without which such
methods can no longer work. Though the ontology provides
precise descriptions of disease concepts and their semantic
relationships, not all biomedical entities have ontologies.

Through the analysis of these limitations, we derive the
following observations.

• The computation of disease similarity should not
strictly depend on quantitative information.

• More metrics and more data sources should be used
for the measurement of disease similarity.

• Ontology-independent strategies should be devel-
oped to measure disease similarity for general usage.

To address the above mentioned challenges, we propose
a novel approach, RADAR (short for representation learning
across disease information networks), for similar disease
detection. The characteristics of RADAR include: (1) it is
capable of computing disease similarity without depen-
dence on any ontology; (2) it computes disease similarity
solely based on the associations between diseases and other
disease-related biomedical entities; (3) it evaluates disease
similarity based on multiple data sources under orthogonal
similarity metrics (i.e. meta-path-based and neighborhood-
based structural similarities); and (4) it flexibly supports the
two typical queries on similar diseases.

The main contributions of this work are as follows:

• We propose RADAR, a general ontology-
independent framework for learning latent
representations for diseases that reflect their
similarities from a perspective where multiple
data sources are involved and considered. Such
representations can be further applied to similar
disease detection.

• We show how RADAR measures disease similarity
under various similarity metrics, while solely based
on the relationships between diseases and other
related entities without reference to any numerical
data.

• We evaluate RADAR on a benchmark disease set
and multiple random disease sets to demonstrate
its effectiveness in searching similar diseases and its
insensitiveness to parameters.

The rest of the paper is organized as follows. We review 
the related work in Section 2. The framework and algorithm 
of RADAR is detailed in Section 3, followed by experiments 
and results discussed in Section 4. We conclude the paper in 
Section 5.

2 RELATED WORK

Many recently proposed methods related to the disease 
similarity computation have used multiple data sources. For 
example, SemFunSim [8] integrated five disease-related gene 
databases to get the disease-related gene sets for calculating 
the disease functional similarity. The same idea was later 
adopted by another two methods InfDisSim [20] and FNSem-
Sim [22] to collect disease-gene associations, while FNSem-
Sim further fuses two gene functional networks FunCoup 
and HumanNet to improve the calculation of disease simi-
larity. Despite the fact that all of these methods have used 
multiple data sources, such multi-source data are not fully 
utilized because they are simply used for data collection at 
the beginning rather than for the measurement of disease 
similarities. One significant problem with such methods is 
their poor scalability, as all the previous computation would 
have to be done again if a new data source were added.

In the recent year, many studies in the field of 
biomedicine such as [23] and [24] have shown that by inte-
grative analysis of multiple data types, better performances 
can be achieved in discovering similar objects.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

The computation of disease similarity is actually the
process of constructing a similarity network. Inspired by
the theoretical multiview learning framework, a method
called SNF [23] fuses multiple similarity networks on the
basis of samples. SNF first builds several sample-similarity
networks based on different data types and then fuses
all these networks into a single similarity network, which
represents the full spectrum of the underlying data. It is
distinctive in iteratively updating each similarity network
with the information from the others, and at last, all sim-
ilarity networks are fused into one. During the process
of fusing networks, the weak similarities disappear while
the strong similarities are kept. Though this may lead to
lost of original information, SNF manages to utilize the
similarity information of all the similarity networks and
thus is reasonable and powerful.

Based on network science, Mucha et al. studied the
community structure of arbitrary multi-slice networks,
which are the combinations of individual networks coupled
through links [25]. Inspired by this, a multiplex network-
based method integrates various omics data to identify
cancer subtypes [24]. Similar to SNF, it first constructs a
patient-wise similarity network for each type of data and
then uses a coupling strength to link each node in a network
slice with its counterparts in the other network slices to
build the multiplex network, where the analysis is done.
This method outperforms the methods that only use a single
data type.

In recent years, the representation learning technique
has been applied to a wide range of applications. It is
capable of capturing the essential semantics of objects and
presents them as dense vectors in low-dimensional space
(known as embeddings), providing convenience for further
analysis. Among various representation learning models,
Skip-Gram [26] has been proven to be fairly effective and
efficient in learning embeddings for textual data such as
words and sentences.

Network representation learning was first proposed by
DeepWalk [27]. DeepWalk considers that nodes with closer
locations in the network are likely to have similar contexts.
Thus, DeepWalk generates sequences for nodes by carrying
out random walks on the network and then uses the Skip-
Gram model to learning embeddings from such sequences.
Later, an improved method called node2vec was proposed
to learn features for nodes that maximize the probability of
preserving the network neighborhoods of nodes [28]. It uses
a second order biased random walk to generate contexts
for nodes to capture the homophily as well as structural
equivalence. This method is more flexible compared with
the previous method for generating contexts. However, all
these methods are designed for the homogenous networks
and cannot be directly applied to heterogenous networks.

In Table 1, we compare our method with several typical
methods which are for the measurement of disease simi-
larity. As presented, our method is characterized in three
aspects: using multiple sources, using multiple metrics and
ontology-independent.

We tackled the problem of similar disease detection
in [29], a preliminary paper of this study. Compared to that
work, in this paper, we present a more complete analysis
of the related work, provide a more detailed description of

TABLE 1
Comparison of current methods for the measurement of disease

similarity

Method Multiple
Sources

Multiple
Metrics

Ontology
Independent

Resnik’s [10] × × ×
Lin’s [11] × × ×

Wang’s [12] × × ×
SemFunSim [8] X X ×

RADRA X X X

the key steps in our method and perform more extensive
empirical evaluations to demonstrate the effectiveness of
our method.

3 THE PROPOSED RADAR APPROACH

To address the problem of similar disease detection, the key
step of RADAR is the construction of the disease similarity
network, an undirected graph expressing the similarities
among diseases. At the very beginning, a disease information
network will be built from each data source, which is a
typical heterogeneous information network defined as:
Definition 1 (Disease Information Network). A disease

information network (DIN) is a graph G = (V,E) with
an object mapping function ϕ : V → A and a link
mapping function ψ : E → R, where A refers to the set
of disease-related biomedical object types and R denotes
the set of relations between objects. Each object v ∈ V
belongs to an object type ϕ(v) ∈ A, and each link e ∈ E
belongs to a relation ψ(e) ∈ R.

Due to the space limitation, please refer to [30] for the
details of the process of building a disease information
network from a given data source, considering this is not
the focus in our study.
Definition 2 (Disease Similarity Network). A disease simi-

larity network (DSN) is an undirected graph S = (D, E)
composed of a set of nodes and a set of edges, where
each node d ∈ D corresponds to a disease and each edge
e ∈ E refers to the similarity between two diseases that
it connects.

In the case of multiple data sources, multiple DSNs will
be constructed. Each disease node will then be connected
to itself in all the other DSNs by RADAR. In other words,
a multi-layer DSN may be constructed, from which the
similarity between diseases can be derived.

The main steps of the RADAR framework are illustrated
in Figure 1.
Step 1 Single-layer DSN Construction: For a disease

information network, the meta-path based and
neighborhood-based structural similarities between
every disease pair are calculated by two similarity
metrics. After the combination of the similarities,
one united disease similarity network is constructed.
(Section 3.1)

Step 2 Multi-layer DSN Construction: Associate all the
disease similarity networks obtained in the previous
step into a multi-layer disease similarity network
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Fig. 1. The similar disease detection framework of RADAR

and then the biased random walk is conducted on it
to generate a context for every disease. (Section 3.2)

Step 3 Similarity query over Embeddings: Apply the Skip-
Gram model to learn the latent representation for
each disease from its context. (Section 3.3)

Next, we introduce each step of RADAR in details.

3.1 Single-layer Disease Similarity Network Construc-
tion
In a disease information network, two diseases can be
connected through different paths. The meta path [30] is a
special path that is defined as:
Definition 3 (Meta Path). A meta path P is a path defined

on the information network and is denoted in the form of
A1

R1−→ A2
R2−→ ...

Rl−→ Al+1, where R = R1 ◦R2 ◦ ...◦Rl

is a composite relation between object type A1 and Al+1,
where ◦ denotes the composition operator on relations.

In particular, a meta path P is a disease meta path if the
two end nodes of P are two diseases belonging to D.
Definition 4 (Disease Path Instance Set). Given a disease

meta path P in a DIN, the disease path instance set,
denoted by Ins(Pd→d′), is a set of paths which go from
d to d′ following P , where d, d′ ∈ D.

Example 1. An example of disease information network is
illustrated in Figure 2. In total there are four object types
{D,G,P,W} and multiple disease meta paths can be
found. For example, the disease meta path “D-W-D”
(short for “Disease-Pathway-Disease”) indicates two dis-
eases sharing the same molecular pathway, with disease
path instances such as “d1−w1−d2” and “d4−w2−d5”.
And “D-G-D” (short for “Disease-Gene-Disease”), indi-
cates that two diseases are triggered by the same gene,
with disease path instances like “d2 − g2 − d3” and
“d6 − g3 − d7”.

node types:: Disease (D) Gene (G) Protein (P) Pathway (W)

d7d2

g1

w1

P

d4

g3

w2

d1

d3 d5

d6

g2

p1 p2

p3

p4

d6dd
4

Fig. 2. An example of disease information network

Observation 1. In a disease information network, two dis-
eases are considered to be more similar in two aspects:
(1) they are connected via more disease meta paths; and
(2) they are connected via a shorter disease meta path.

Example 2. In Figure 2, d7 is more similar to d6 compared
with d5 to d6. This is because d6 and d7 share three paths,
i.e., {d6 − p3 − d7, d6 − p4 − d7, d6 − g3 − d7}, while d6
and d5 only share one path {d6 − w2 − d5}. Besides, d6
and d1 are unlikely to be similar compared with d6 to
d4. This is because the disease meta path via d6 and d1
is much longer than that via d6 and d4, which indicates
a loose relationship between d6 and d1.

By leveraging the structure of a disease information net-
work, RADAR constructs its corresponding disease similar-
ity network under two orthogonal similarity measurements, 
i.e., the meta path-based and the neighborhood-based struc-
tural similarity metrics.

3.1.1 Measuring Meta Path-based Structural Similarity
In a heterogenous network, the meta path, which is a special 
path through a certain number of nodes, is usually used 
to imply the subtle relationship between two end nodes. 
A meta path-based similarity measure called PathSim [30]
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was proposed to find similar peer nodes in a network based 
on a symmetric meta path, and has received fairly good 
effects. Similarly, RADAR searches similar diseases in a 
disease information network by a predefined symmetric 
disease meta path that indicates the relationship between 
two diseases.

Formally, for two diseases d1 ∈ D and d2 ∈ D, their 
meta path-based structural similarity is defined as:

StrSimpath(d1, d2) =
2× |Ins(Pd1→d2

)|
|Ins(Pd1→d1)|+ |Ins(Pd2→d2)|

(1)

where |Ins(Pd1→d2 )| is the number of distinct paths 
following the disease meta path Pd1→d2 .

According to the self-maximum property of Path-Sim 
[30], we have 0.0 ≤ StrSimpath(d1, d2) ≤ 1.0, where 
StrSimpath(d1, d2) = 0.0 if d1 and d2 are not connected, and 
StrSimpath(d1, d2) = 1.0 if d1 and d2 share exactly every 
related object involved in the disease meta path.

By traversing the whole network, RADAR computes the 
meta path-based structural similarity for every disease pair 
based on the predefined disease meta path according to 
Equation 1. In case of more than two types of objects in the 
DIN (i.e., |A| > 2), domain knowledge is needed for making 
decision on defining the disease meta path(s) to be used. If 
over two disease meta paths are used, multiple results will 
be produced accordingly. In default, each disease meta path 
takes equal importance, while different weights can be 
assigned to different parts in terms of their contributions to 
the expression of disease similarity with the help of domain 
knowledge. The final meta path-based structural similarity 
is the weighted summation of each part.

3.1.2 Measuring Neighborhood-based Structural Similarity
It is worth noting that due to the constraint of the defined 
disease meta path, the disease meta path-based similarity 
measurement can only capture the relationship between two 
end nodes of the path and may thus fail to discover more 
potential similar nodes.
Example 3. In Figure 2, if the disease meta path is defined

as “D-W-D”, then d2 and d4 will not be considered to
be similar even if they share one related gene and one
related protein.

From Example 3, it is clear that the disease similarity 
depends on the disease meta path used, which requires 
domain knowledge when defined, and improper selection of 
disease meta path may lead to biased results.

A recent approach given in [31] provides a new in-sight 
into solving the problem of finding similar pairs in a 
homogeneous network. The similarity between pairwise 
nodes is calculated solely based on their structural identities 
of neighborhoods in a network, and thus more similar node 
pairs are able to be discovered. As struc2vec [31] can only 
handle homogeneous data, RADAR further adapted this 
idea into the disease information network, to measure the 
disease similarity based on their structural identities of 
neighborhoods, as a supplement of the computation of 
disease similarity.

For any two nodes in a disease information network, 
we use hop to denote the least number of moves that will be 
made from one node to the other. We refer the neighborhood

of a node d to a set of nodes directly connected to d or having
an indirect connection to d, and we call this set of nodes as
the ϵ-Neighbor Set defined as:
Definition 5 (ϵ-Neighbor Set). In a disease information

network, we use ℓϵ(d) to denote the set of nodes which
are ϵ hop(s) (ϵ ≥ 1) from d, where d ∈ D.

Example 4. In Figure 2, for d4, it has four 1-hop neighbors,
i.e., ℓ1(d4) = {g2, p1, p2, w2}, and four 2-hop neighbors,
i.e., ℓ2(d4) = {d2, d3, d5, d6}. For d5, ℓ1(d5) = {g2, w2}
and ℓ2(d5) = {d2, d3, d4, d6}, which means d5 has two
1-hop neighbors and four 2-hop neighbors.

Due to the heterogeneity of the disease information
network and the characteristics of biomedical entities, we
derive the following observation:
Observation 2. For any node in a disease information net-

work, its nearer neighbors contribute more to describe
its structural identity than its farther neighbors.

Inspired by the idea of Katz centrality [32], a decaying 
weight factor α in the range between 0 and 1 is introduced to 
penalize the contributions of distant neighbors of a node in 
the DIN.

In a disease information network, the number of edges 
incident to a node v ∈ V is called the degree of v. We denote 
DS(ℓϵ(d)) the degree sequence of each node in ℓϵ(d) sorted 
in the ascending order for accelerating the computation. Let 
α be the decaying weight factor that determines the impor-
tance of neighborhoods of nodes at different hops. Given 
a disease information network containing a set of diseases 
D, the neighborhood-based structural distance between two 
disease nodes d1, d2 ∈ D is defined as:

StrDisϵ(d1, d2) = StrDisϵ−1(d1, d2) +

αϵ × T (DS(ℓϵ(d1)), DS(ℓϵ(d2))) (2)

where T (DS(ℓϵ(d1)), DS(ℓϵ(d2))) measures the distance
between two ordered degree sequences DS(ℓϵ(d1)) and
DS(ℓϵ(d2)), and StrDis0(d1, d2) = 0. Since the ordered
degree sequences are composed of numerical elements, they
can be regarded as time series. Therefore, the Dynamic Time
Warping (DTW) [33] method is adopted to calculate the
approximate distance between two sequences, as DTW has
been verified to be very effective in handling time series by
using some optimal element alignment strategies to ensure
the distance of two sequences is minimal. For two ordered
degree sequences DS1 and DS2, the distance between the i-
th element in DS1 (denoted by DS1[i]) and the j-th element
in DS2 (denoted by DS2[j]) is defined as:

dis(DS1[i], DS2[j]) =
max(DS1[i], DS2[j]) + η

min(DS1[i], DS2[j]) + η
− 1 (3)

where η is a parameter preventing dis(·) being too large.
(We set η = 0.5 as in [31].)

In this way, by applying Equation 3, the distances be-
tween every pair of matched elements are obtained, and T 
(·) further sums the distances to get the final distance 
between two degree sequences.

For any disease node d ∈ D, as the hop count ϵ in-
creasing, the according hop of its neighborhood takes less 
importance with regards to d, since α gives more penalty 
to the further neighborhood. In such sense, it would be
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meaningless to go too far from d. Therefore, RADAR only
takes the first several hops (we set ϵ = 2) of neighbors of
d into consideration when describing the structural identity
of d. The decaying weight factor α will be evaluated in the
experiment to test its impact on RADAR.

We use the natural exponential function to restrict the
value of similarity in the range between 0.0 and 1.0, and
the final neighborhood-based structural similarity between
diseases d1 and d2 is

StrSimnei(d1, d2) = e−StrDisϵ(d1,d2) (4)

For every disease in a pair, RADAR traverses each hop 
of its neighborhood starting from itself to its ϵ-hop neigh-
borhood and computes the neighborhood-based structural 
similarity between them according to Equation 4. Similar to 
the computation of meta-path-based disease similarity, if 
more than two types of objects exist in the DIN, a set of 
neighborhood-based structural similarities will be produced 
based on each type of object, and thus multiple sets of 
similarities will be produced. The final similarity is obtained 
by the weighted summation of each part.

Though both targeted at a certain disease pair based on 
the disease information network, the main difference 
between the two similarity metrics that we have applied lies 
in that: StrSimpath requires some predefined knowledge 
(i.e., disease meta path), and only focuses on the char-
acteristics of the two diseases and counts the number of 
their path instances, while StrSimnei needs no professional 
knowledge and considers a wider local area of the network 
structure (i.e., neighborhood) of each disease compared.

3.1.3 Similarity Combination
After measuring the disease similarity under two orthog-
onal measurements on a disease information network, two 
sets of disease similarities have been obtained. Now RADAR 
merges these similarities together to build a united disease 
similarity network.

A straightforward way is to use the linear combination, 
with the weight for each part predefined. Formally, the 
combined similarity for a DIN is computed as:

Sim = w1 × StrSimpath + w2 × StrSimnei (5)

where w1, w2 ∈ [0, 1] are the weights that adjust the 
contribution of each similarity and w1 +w2 = 1. Here, equal 
importance is given to each part, i.e., w1 = w2 = 0.5. In case 
of more than two types of metrics, each part will be assigned 
a weight with the sum of all weights being 1.0 if linear 
combination is adopted for similarity fusion. Any other 
merging method can be adopted to combine the similarities 
obtained under any other metrics besides StrSimpath and 
StrSimnei.

3.2 Multi-layer Disease Similarity Network Construc-
tion
Though calculated by the same measurements, the DSNs 
obtained from multiple disease information networks are 
different from each other because the characteristics of the 
disease information networks differ. In order to best keep 
the original information about every DSN, all DSNs are in-
tegrated into a multi-layer DSN by associating each disease

node located in one DSN with its counterpart in another 
by an unweighted edge. The edges are unweighted because 
they are simply used to indicate the same nodes in different 
networks.

RADAR has an advantage over SNF [23] in terms of 
retaining original information. RADAR constructs the multi-
layer DSN without lost of any information about each 
similarity network, while SNF fuses multiple similarity net-
works into a single one, only keeping the strong similarities 
but losing the weak ones.

Over the multi-layer DSN, RADAR then conducts the 
random walks, particularly the biased random walks to 
generate a node sequence for each disease node, which can 
be regarded as its context. In an individual network, at 
each step, the walker randomly selects the next node with a 
probability proportional to the weights of the current node’s 
links. Since the weight of each edge in an DSN is represented 
by the similarity score of the disease pair it connects, the 
random walking for a disease node in a DSN is actually a 
process of choosing a set of nodes for it, with each similar 
to its previous one and the whole node sequence similar 
to the starting node. Obviously, even for the same node, 
the edges incident to it in different DSN may have quite 
different weights. Therefore, it is necessary to switch layers 
of networks during the random walks for greater weights.

Taking this into consideration, the layer of DSN where 
node d has the maximal link weight among all will be 
selected, which is denoted by layermax(d), and the random 
walk for d will only be conducted at layermax(d). In each 
step of the process of generating a node sequence for node 
d, a random step will only be made if the current layer is 
layermax(d), while in the other case, the walker will switch 
to layermax(d) and no step will be made in this turn. In this 
way, the sequence of a node generated by the walker will be 
composed of a series of similar nodes across the multi-layer 
DSN.

In summary, RADAR will first start from a random layer 
at a random disease node. Then the biased random walk 
with the length of δ is conducted for every disease node 
and its context will be produced accordingly in the end. 
By walking in the multi-layer DSN, the generated context 
is able to capture the similarity relationships for a disease 
node from multiple perspectives. For the sake of sufficiency 
of node sequences, the random walking is repeated several 
times for each node.

3.3 Similarity Query over Embeddings

We adopt the Skip-Gram model to learn embeddings (with 
dimension λ) for all disease nodes based on the generated 
contexts. As introduced in Section 2, the embeddings of 
nodes can successfully capture the similarities obtained 
from multiple disease information networks. Though the 
Skip-Gram model is adopted by RADAR, any other repre-
sentation learning models can be used as an alternative to 
learn embeddings for diseases.

Since each disease is now represented by a vector, the 
disease similarity can be easily calculated by applying a 
favorable distance measurement, such as the cosine and 
Pearson correlation coefficient. The framework of RADAR 
is summarized in Algorithm 1.
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Algorithm 1 RADAR (N )
Input: N : the set of disease information networks
Output: R: the results of similar disease query

1: G ← ∅
2: for N ∈ N do
3: compute StrSimpath and StrSimnei for every pair of

diseases in N
4: G← the single-layer DSN constructed from N
5: G ← G ∪ {G}
6: end for
7: Connect the same disease nodes in different layers in G
8: Produce the set of layers L where the maximum link

weight of each node is obtained
9: Generate contexts Con by conducting the biased ran-

dom walks on G based on L
10: Learn embeddingsM for all nodes from Con
11: R← Perform similar disease query overM
12: return R

TABLE 2
Characteristics of the Disease Information Networks

DIN Type of Nodes # of Nodes # of Edges

Dis-C Disease 1626 405567Chemical 4127

Dis-P Disease 1626 222047Pathway 2313

4 EXPERIMENTS, RESULTS AND DISCUSSION

In this section, we evaluated the ability and performance of
RADAR in measuring disease similarity with capturing the
structural identities of diseases in multiple disease informa-
tion networks.

4.1 Datasets

We used the data from Comparative Toxicogenomics
Database1 (CTD) [34], which is a public database mainly
providing information about environmentally influenced
diseases and their relationships with chemicals, genes and
some other biomedical entities. We adopted two datasets
including three types of biomedical entities and their cor-
responding associations to search similar diseases. One
dataset contains associations between diseases and chemi-
cals, based on which a disease information network called
“Dis-C” was built. The other one contains associations be-
tween diseases and pathways, based on which a disease
information network called “Dis-P” was built. The detailed
characteristics of these two disease information networks
are presented in Table 2.

4.2 Effectiveness

We extracted the benchmark disease set including 40 dis-
eases between 56 disease pairs from the set given by [8]
as the positive samples, which contained disease pairs that
have been confirmed to be similar by Suthram et al [35] and
Pakhomov et al [36]. A random disease set with 200 disease
pairs was generated by randomly selecting 200 disease pairs

1. http://ctdbase.org/downloads/

from the whole disease set excluding the diseases included 
in the benchmark set. Such random disease pairs were re-
garded as the negative samples, i.e., dissimilar disease pairs, 
because it is unlikely that two diseases picked up randomly 
happen to be so similar. In each experiment, we applied 
RADAR on the benchmark disease set as well as a random 
disease set to test its effectiveness of finding similar diseases. 
Throughout each experiment, several running parameters 
were set in default as α = 0.5, ϵ = 2, δ = 160 and 
λ = 128. The experiment was iterated for 100 times in order 
to reduce occasionality. The cosine measurement was 
adopted to measure the distance of vectors generated in 
Section 3.3.

To the best of our knowledge, RADAR is the first work 
that measures disease similarity from multiple data sources 
under two DIN-based structural similarity measurements. 
Thus, we first verified the necessities of measuring disease 
similarity (1) under two orthogonal metrics, (2) across mul-
tiple disease information networks, respectively.

First, we compared RADAR with its two variations. 
Specifically, we implemented two versions of RADAR. One 
only computed the meta path-based similarity (Equation 1), 
which was called “Simpath”. The other one only computed 
the neighborhood-based structural similarity (Equation 4), 
which was called “Simnei”. Since only one set of disease 
similarity will be produced under a single similarity metric, 
there is no need for similarity combination as introduced in 
Section 3.1.3.

Figure 3 illustrates the Receiver Operating Characteristic 
(ROC) curves drawn for RADAR, “Simpath” and “Simnei”, 
respectively, based on the benchmark disease set and ran-
dom disease sets. It is clear that, RADAR achieved the best 
performance with an Area Under the ROC Curve (AUC) 
of 0.8698, followed by “Simpath” and “Simnei”, with the 
AUCs of 0.8479 and 0.7807, respectively. Nevertheless, all of 
them did much better than the random performance. The 
result demonstrates that combining similarities obtained 
under two types of metrics makes it more effective than 
only using a single metric for similar disease detection.

Second, we applied RADAR only on the “Dis-C” DIN 
(called “DIN-C”), only on the “Dis-P” DIN (called “DIN-
P”), and across the two DINs, respectively, to evaluate the 
necessity of integrating multiple disease similarity networks 
obtained from different data sources.

Figure 4 shows the ROC curves drawn for RADAR, 
“DIN-C” and “DIN-P”, respectively. RADAR performed the 
best, while “DIN-C” and “DIN-P” received relatively lower 
AUCs of 0.8429 and 0.8284, respectively. The result verifies 
the effectiveness of integrating multiple similarity networks.

We can see from the above results that by combining 
various similarity measurements and integrating multiple 
similarity networks, better performance can be achieved for 
similar disease detection.

Next, several diseases were randomly selected from the 
disease set as the query diseases, and a list comprising the 
top-5 most similar diseases to each query was generated 
by RADAR. The results were recorded in Table 3. Take 
the disease Anemia for example, RADAR has discovered 
that Melanoma was most similar or related to it within the 
given disease set. Many studies on these two diseases have 
revealed their close relationship, such as it was found that
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Fig. 3. Performance analysis of combining similarities under the meta
path-based structural similarity measurement and the neighborhood-
based structural similarity measurement compared with using only sin-
gle similarity metric.
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Fig. 4. Performance analysis of integrating multiple similarity networks
compared with using single similarity network.

the autoimmune hemolytic anemia is induced by anti-PD-1
therapy in metastatic melanoma [37].

4.3 Case Study

Three diseases Myotonia Congenita, Myotonic Dystrophy, and
Myotonic Disorders were selected as the targets and analysed
for further evaluation of the effectiveness of our method.
Besides, two non-related diseases Vitiligo and Kidney Calculi
were selected as the contrasts. Table 4 presents the similarity
score of each disease pair measured by our method.

It is known that clinically Myotonia Congenita, Myotonic
Dystrophy, and Myotonic Disorders all belong to certain neu-
romuscular disorders. In the curated medical vocabulary
resource MeSH [15], both the terms Myotonia Congenita and
Myotonic Dystrophy are found to be the children of the term

TABLE 3
Top-k similar diseases for the given queries

Query Top-5 Results Score

Anemia

Melanoma 0.6424
Spinocerebellar Ataxia 0.6332
Shock, Hemorrhagic 0.6255

Brain Injuries 0.6217
Pulmonary Emphysema 0.6175

Hypertension

Trigeminal Neuralgia 0.6429
Hyperplasia 0.6373

Spinocerebellar Ataxia 0.6152
Mammary Neoplasms 0.6047

Inflammation 0.6047

Obesity

Stomach Neoplasms 0.6122
Atopic Dermatitis 0.6116

Pulmonary Fibrosis 0.6109
Liver Cirrhosis 0.5960

Neoplasm Metastasis 0.5953

Arthritis, Experimental

Spinocerebellar Ataxia 0.6020
Acute Coronary Syndrome 0.5904

Hyperplasia 0.5841
Small Cell Lung Carcinoma 0.5799

Leukemia, Promyelocytic, Acute 0.5742

Coronary Disease

Myocardial Ischemia 0.5620
Carcinoma, Non-Small-Cell Lung 0.5561

Hepatitis, Chronic 0.5547
Hyperinsulinism 0.5536

Glioma 0.5510

Myotonic Disorders, and the definition of Myotonic Disorders
presents its close relationships with Myotonia Congenita and
Myotonic Dystrophy. As a contrast, Vitiligo is a type of skin
disorder and Kidney Calculi is a disease originated in human
kidneys. Both of them have not been found to have any asso-
ciations with the above three targeted diseases. As shown in
Table 4, the high similarity scores between targeted diseases
and low similarity scores between the contrast disease pairs
demonstrate that our method is effective in detecting similar
diseases.

4.4 Parameter Sensitivity
Several parameters were tested to evaluate their impacts
on RADAR measured by AUC score, including α, δ, and
λ, which refer to the decaying weight factor, the length of
random walk per node, and the embedding dimension, re-
spectively. In this part, all the experiments were performed
across all datasets (“DIN-C” and “DIN-P”) and two similar-
ity metrics (meta-path-based similarity and neighborhood-
based similarity) were both adopted. Their performances are
presented in Figure 5.

As shown in Figure 5(a), RADAR did the best when
α = 0.3, while the other performances did not vary a lot
from each other. It is observed from Figure 5(b) that the
overall performance became stable when δ was over 80 and
the best performance was achieved when δ is around 120.
Similarly, despite the best performance was achieved when
λ was around 32 as shown in Figure 5(c), there were just
very trivial differences among all results.

The above results suggest that the proposed method is
not critically sensitive to α, δ, and λ in general.

4.5 Comparison with Other Methods
RADAR was further compared with four typical meth-
ods (i.e., Resnik’s method [10], Lin’s method [11], Wang’s
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method [12], and SemFunSim [8]) as introduced in Sec-
tion 1 for searching similar diseases. The similarity scores 
between 3525 diseases calculated by these methods were 
downloaded from the system DincRNA2 [38]. Considering 
the identifiers of diseases in DincRNA are different from that 
in the datasets used by this paper, disease identifiers were 
first mapped and 877 shared diseases were then obtained. 
The mapping was also done on the benchmark disease 
set and 40 disease pairs were extracted. Next, 100 random 
disease sets were generated by the same way as introduced 
in Section 4.2. Based on the extracted benchmark disease set 
and the random disease sets, the aforementioned five meth-
ods were compared with on measuring similar diseases.

Table 5 presents the distribution of 100 iterations of AUC 
scores for all of the methods. From Table 5, it is observed that 
the performance of the first three methods was very close, 
all much lower than the performance of the latter ones. 
The possible reason for their poor performance may be that 
Resnik’s method and Lin’s method measure the semantic 
similarity of terms in certain general taxonomies rather than 
biomedical ontologies, and Wang’s method is mainly de-
signed for the measurement of GO terms. It remains unclear 
whether these three methods are suitable for measuring 
disease similarity. SemFunSim did the best among all. We 
attribute this to the support of the richness in DO seman-
tics and gene functional associations to the interpretation of 
disease similarity. Though SemFunSim performed better than 
RADAR, we still managed to achieve a relatively good effect 
and the results in Figure 5 verified the stableness of our 
method.

5 CONCLUSION

Similar disease detection has significant implications in the 
field of biomedicine. Most of the current methods search 
similar diseases based on numerical data and are ontology 
dependent, while these requirements can not always be 
met. Besides, many of them evaluate disease similarity only 
under a single metric and only from a single data source, 
which lacks full consideration of multiple aspects.

We propose RADAR, a general ontology-independent 
and network-based framework for learning representations 
for diseases that capture their structural identities from a 
comprehensive perspective. Such representations were used 
to detect similar diseases. RADAR computes disease simi-
larity under various metrics, and it is novel in discovering 
the relationship between disease pairs by maximizing the 
exploitation of associations among multiple disease-related 
data, without referring to any numerical information or 
ontologies. This may facilitate relevant studies and can be 
further improved to attain more accurate results.

The performance of RADAR was evaluated based on 
a benchmark disease set as well as 100 random disease 
sets. The high AUC suggested that RADAR is effective in 
discovering similar diseases and the sensitivity test showed 
that RADAR is generally insensitive to the selection of 
parameters.

In this paper, though we focus on the problem of com-
puting disease similarity without reference to ontologies, it

2. http://bio-annotation.cn:18080/DincRNAClient/

TABLE 4
Similarity scores of selected diseases computed by our method

Group Disease Pair Score

Target
(Myotonic Disorders, Myotonia Congenita) 0.6452
(Myotonic Disorders, Myotonic Dystrophy) 0.5826
(Myotonia Congenita, Myotonic Dystrophy) 0.4561

Constrast 1
(Myotonia Congenita, Vitiligo) 0.0491
(Myotonic Disorders, Vitiligo) 0.0209
(Myotonic Dystrophy, Vitiligo) 0.0895

Constrast 2
(Myotonia Congenita, Kidney Calculi) 0.0820
(Myotonic Disorders, Kidney Calculi) 0.0302
(Myotonic Dystrophy, Kidney Calculi) 0.0105

TABLE 5
The distribution of 100 iterations of AUC scores for each method

Method Max AUC Min AUC Average AUC

Resnik’s [10] 0.6925 0.6148 0.6524
Lin’s [11] 0.7351 0.6771 0.7048

Wang’s [12] 0.7283 0.6439 0.6873
SemFunSim [8] 0.9565 0.8964 0.9289

RADAR 0.9020 0.8367 0.8736

is also interesting to consider using the ontology to improve
the performance of similar disease detection, which can be
studied in the future work. As for future work, we also
intend to focus on the following tasks. First, RADAR will be
applied to other applications to further test its performance.
The scalability of RADAR should be improved so that
it can be smoothly applied to large-scale datasets. When
combining similarities obtained under various similarity
metrics, improved merging methods can be designed to
better balance the importance of each metric and to better
utilize current information. When building the multi-layer
similarity network, techniques such as object recognition
and object matching may be adopted to allow diseases from
various data sources with different representations to match
with each other. Strategies of random walks could be further
improved. Improvement may also be made to allow real-
time update of the multi-layer network when a new data
source is added.
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