7,836 research outputs found

    Deterministic Dense Coding and Faithful Teleportation with Multipartite Graph States

    Full text link
    We proposed novel schemes to perform the deterministic dense coding and faithful teleportation with multipartite graph states. We also find the sufficient and necessary condition of a viable graph state for the proposed scheme. That is, for the associated graph, the reduced adjacency matrix of the Tanner-type subgraph between senders and receivers should be invertible.Comment: 10 pages, 1 figure;v2. discussions improve

    Reconstructing f(R)f(R) Theory from Ricci Dark Energy

    Full text link
    In this letter, we regard the f(R)f(R) theory as an effective description for the acceleration of the universe and reconstruct the function f(R)f(R) from the Ricci dark energy, which respects holographic principle of quantum gravity. By using different parameter α\alpha in RDE, we show the behaviors of reconstructed f(R)f(R) and find they are much different in the future.Comment: 16 pages, 7 figure

    Ricci Dark Energy in braneworld models with a Gauss-Bonnet term in the bulk

    Full text link
    We investigate the Ricci Dark Energy (RDE) in the braneworld models with a Gauss-Bonnet term in the Bulk. We solve the generalized Friedmann equation on the brane analytically and find that the universe will finally enter into a pure de Sitter spacetime in stead of the big rip that appears in the usual 4D Ricci dark energy model with parameter α<1/2\alpha<1/2. We also consider the Hubble horizon as the IR cutoff in holographic dark energy model and find it can not accelerate the universe as in the usual case without interacting.Comment: 7 pages, 2 figure

    Federated Deep Reinforcement Learning for THz-Beam Search with Limited CSI

    Full text link
    Terahertz (THz) communication with ultra-wide available spectrum is a promising technique that can achieve the stringent requirement of high data rate in the next-generation wireless networks, yet its severe propagation attenuation significantly hinders its implementation in practice. Finding beam directions for a large-scale antenna array to effectively overcome severe propagation attenuation of THz signals is a pressing need. This paper proposes a novel approach of federated deep reinforcement learning (FDRL) to swiftly perform THz-beam search for multiple base stations (BSs) coordinated by an edge server in a cellular network. All the BSs conduct deep deterministic policy gradient (DDPG)-based DRL to obtain THz beamforming policy with limited channel state information (CSI). They update their DDPG models with hidden information in order to mitigate inter-cell interference. We demonstrate that the cell network can achieve higher throughput as more THz CSI and hidden neurons of DDPG are adopted. We also show that FDRL with partial model update is able to nearly achieve the same performance of FDRL with full model update, which indicates an effective means to reduce communication load between the edge server and the BSs by partial model uploading. Moreover, the proposed FDRL outperforms conventional non-learning-based and existing non-FDRL benchmark optimization methods

    An Evolutionary Method for Financial Forecasting in Microscopic High-Speed Trading Environment

    Get PDF
    The advancement of information technology in financial applications nowadays have led to fast market-driven events that prompt flash decision-making and actions issued by computer algorithms. As a result, today’s markets experience intense activity in the highly dynamic environment where trading systems respond to others at a much faster pace than before. This new breed of technology involves the implementation of high-speed trading strategies which generate significant portion of activity in the financial markets and present researchers with a wealth of information not available in traditional low-speed trading environments. In this study, we aim at developing feasible computational intelligence methodologies, particularly genetic algorithms (GA), to shed light on high-speed trading research using price data of stocks on the microscopic level. Our empirical results show that the proposed GA-based system is able to improve the accuracy of the prediction significantly for price movement, and we expect this GA-based methodology to advance the current state of research for high-speed trading and other relevant financial applications

    On the Ricci dark energy model

    Full text link
    We study the Ricci dark energy model (RDE) which was introduced as an alternative to the holographic dark energy model. We point out that an accelerating phase of the RDE is that of a constant dark energy model. This implies that the RDE may not be a new model of explaining the present accelerating universe.Comment: 8 page

    3D LiDAR Aided GNSS NLOS Mitigation for Reliable GNSS-RTK Positioning in Urban Canyons

    Full text link
    GNSS and LiDAR odometry are complementary as they provide absolute and relative positioning, respectively. Their integration in a loosely-coupled manner is straightforward but is challenged in urban canyons due to the GNSS signal reflections. Recent proposed 3D LiDAR-aided (3DLA) GNSS methods employ the point cloud map to identify the non-line-of-sight (NLOS) reception of GNSS signals. This facilitates the GNSS receiver to obtain improved urban positioning but not achieve a sub-meter level. GNSS real-time kinematics (RTK) uses carrier phase measurements to obtain decimeter-level positioning. In urban areas, the GNSS RTK is not only challenged by multipath and NLOS-affected measurement but also suffers from signal blockage by the building. The latter will impose a challenge in solving the ambiguity within the carrier phase measurements. In the other words, the model observability of the ambiguity resolution (AR) is greatly decreased. This paper proposes to generate virtual satellite (VS) measurements using the selected LiDAR landmarks from the accumulated 3D point cloud maps (PCM). These LiDAR-PCM-made VS measurements are tightly-coupled with GNSS pseudorange and carrier phase measurements. Thus, the VS measurements can provide complementary constraints, meaning providing low-elevation-angle measurements in the across-street directions. The implementation is done using factor graph optimization to solve an accurate float solution of the ambiguity before it is fed into LAMBDA. The effectiveness of the proposed method has been validated by the evaluation conducted on our recently open-sourced challenging dataset, UrbanNav. The result shows the fix rate of the proposed 3DLA GNSS RTK is about 30% while the conventional GNSS-RTK only achieves about 14%. In addition, the proposed method achieves sub-meter positioning accuracy in most of the data collected in challenging urban areas
    • …
    corecore