4,505 research outputs found
Recommended from our members
(Photo)Electrocatalytic CO2 Reduction at the Defective Anatase TiO2 (101) Surface
Excessive carbon dioxide (CO2) emissions by combustion of fossil fuels are linked to global warming and rapid climate change. One promising route to lowering the concentration of CO2 in the atmosphere is to reduce it to useful small molecules via photoelectrocatalytic hydrogenation, which would enable solar energy storage with a zero-carbon emission cycle and perform a more efficient separation of the photogenerated electron and hole pair than pure photocatalysis. Indeed, photoelectrocatalytic CO2 reduction has been an intense focus of research. Using the density functional theory (DFT), we studied the CO2 reduction reaction on the defective anatase TiO2 (101) surface, at both the solvent/catalyst and the electrolyte/catalyst interfaces. The analysis of the electronic structure of the surface shows a contrast between the solvent/catalyst and the electrolyte/catalyst interfaces, which results in the two corresponding catalytic cycles being distinct. Our study explains at the electronic and mechanistic levels why methanol is the main product in the presence of the electrolyte and why the overpotential is not only controlled by the reaction process but also by the diffusion process
Rock-salt SnS and SnSe: Native Topological Crystalline Insulators
Unlike time-reversal topological insulators, surface metallic states with
Dirac cone dispersion in the recently discovered topological crystalline
insulators (TCIs) are protected by crystal symmetry. To date, TCI behaviors
have been observed in SnTe and the related alloys PbSnSe/Te,
which incorporate heavy elements with large spin-orbit coupling (SOC). Here, by
combining first-principles and {\it ab initio} tight-binding calculations, we
report the formation of a TCI in the relatively lighter rock-salt SnS and SnSe.
This TCI is characterized by an even number of Dirac cones at the high-symmetry
(001), (110) and (111) surfaces, which are protected by the reflection symmetry
with respect to the (10) mirror plane. We find that both SnS and SnSe
have an intrinsically inverted band structure and the SOC is necessary only to
open the bulk band gap. The bulk band gap evolution upon volume expansion
reveals a topological transition from an ambient pressure TCI to a
topologically trivial insulator. Our results indicate that the SOC alone is not
sufficient to drive the topological transition.Comment: 5 pages, 5 figure
The influence of particle type on the mechanics of sand-rubber mixtures
Triaxial and oedometer tests were used to demonstrate that a critical state framework can be applied to sand–rubber mixtures of similar soil grain and rubber sizes. It described well the behavior of a crushable sand and a quartz sand with either rubber fibers or granules of a variety of quantities, from small to large strains. Together with additional oedometer tests on soils of a wider variety of gradings, the work enabled the influences of sand particle type, grading, and rubber shape to be established. The sand particle type, specifically whether the grains were weak or strong, was found to be a key factor. It affected the yield in compression, even when large quantities of rubber were added. It controlled the critical state stress ratio, except for those mixtures with the highest content of rubber fibers, as well as the stress strain behavior. Sand particle type also determined the critical state line (CSL) location in the volumetric plane for lower rubber contents, but at higher rubber contents the behavior tended to converge for the two sand types. The grading and rubber type were not found to affect the compression or swelling indices significantly, which were mainly controlled by rubber content. Gradings that had nonconvergent compression paths without added rubber tended to retain this feature with rubber. The addition of both types of rubber led to higher volumetric compression in isotropic or one-dimensional compression but reduced volumetric strain during shear, altering the shapes of the state boundary surfaces
Recommended from our members
Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V
LiCoO2 is a dominant cathode material for lithium-ion (Li-ion) batteries due to its high volumetric energy density, which could potentially be further improved by charging to high voltages. However, practical adoption of high-voltage charging is hindered by LiCoO2’s structural instability at the deeply delithiated state and the associated safety concerns. Here, we achieve stable cycling of LiCoO2 at 4.6 V (versus Li/Li+) through trace Ti–Mg–Al co-doping. Using state-of-the-art synchrotron X-ray imaging and spectroscopic techniques, we report the incorporation of Mg and Al into the LiCoO2 lattice, which inhibits the undesired phase transition at voltages above 4.5 V. We also show that, even in trace amounts, Ti segregates significantly at grain boundaries and on the surface, modifying the microstructure of the particles while stabilizing the surface oxygen at high voltages. These dopants contribute through different mechanisms and synergistically promote the cycle stability of LiCoO2 at 4.6 V
A small synthetic molecule functions as a chloride–bicarbonate dual-transporter and induces chloride secretion in cells
A C2 symmetric small molecule composed of L-phenylalanine and isophthalamide was found to function as a Cl−/HCO3− dual transporter and self-assemble into chloride channels. In Ussing-chamber based short-circuit current measurements, this molecule elicited chloride-dependent short-circuit current (Isc) increase in both Calu-3 cell and CFBE41o-cell (with F508del mutant CFTR) monolayers.postprin
Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode
Anionic redox reaction (ARR) in lithium- and sodium-ion batteries is under hot discussion, mainly regarding how oxygen anion participates and to what extent oxygen can be reversibly oxidized and reduced. Here, a P3-type Na0.6[Li0.2Mn0.8]O2 with reversible capacity from pure ARR was studied. The interlayer O-O distance (peroxo-like O-O dimer, 2.506(3) Å), associated with oxidization of oxygen anions, was directly detected by using a neutron total scattering technique. Different from Li2RuO3 or Li2IrO3 with strong metal-oxygen (M-O) bonding, for P3-type Na0.6[Li0.2Mn0.8]O2 with relatively weak Mn-O covalent bonding, crystal structure factors might play an even more important role in stabilizing the oxidized species, as both Li and Mn ions are immobile in the structure and thus may inhibit the irreversible transformation of the oxidized species to O2 gas. Utilization of anionic redox reaction (ARR) on oxygen has been considered as an effective way to promote the charge-discharge capacity of the layered oxide cathodes for lithium- or sodium-ion batteries. The detailed mechanism of ARR, in particular how crystal structure affects and coordinates with the ARR, is not yet well understood. In the present work, a combination of X-ray and neutron total scattering measurements has been performed to study the structure of the prototype P3-type layered Na0.6[Li0.2Mn0.8]O2 with pure ARR. Unique structural characteristics, rather than prevailing knowledge of covalency of metal-oxygen, enable the stabilization of the crystal structure of Na0.6[Li0.2Mn0.8]O2 along with the ARR. This work suggests that reversible ARR can be manipulated by proper structure designs, thus to achieve high lithium or sodium storage in layered oxide cathodes. For P3-type Na0.6[Li0.2Mn0.8]O2 with relatively weak Mn-O covalent bonding, crystal structure factors play an important role in stabilizing the oxidized species, inhibiting the irreversible transformation of the oxidized species to O2 gas. The finding is important for better design of layered oxide positive materials with higher reversible capacity via the introduction of a reversible anionic redox reaction
Shallow optically active structural defect in wurtzite GaN epilayers grown on stepped 4H-SiC substrates
Shallow optically active structural defect in wurtzite GaN epilayers grown on stepped 4H-SiC substrates was investigated. The GaN epilayers grown with plasma-assisted molecular-beam epitaxy were optically characterized by photoluminescence and excitation spectra. Results showed that the localized states which were induced by the structural defect located about 100 meV above the maximum valence band of GaN.published_or_final_versio
Bridge Operational Modal Identification Using Sparse Blind Source Separation
© 2020, Springer Nature Singapore Pte Ltd. The bridge infrastructures are subjected to continuous degradation due to ageing, environmental and excess loading. Monitoring of these structures is a key part of any maintenance strategy as it can give early warning if a bridge is becoming unsafe. Most of the current approaches are using direct measurements that the sensors are installed at different specific locations on the bridge to capture the dynamic characteristics of the structure under random input, such as wind loads, traffic loads and ground motions. Based on the assumption on the white noise characteristics of the random input, structural properties of the bridge could be extracted from the vibration responses only. However, the bridge is subjected to non-stationary traffic loads, and the frequency characteristics of vibrations are varied. Especially for short-span bridges, the non-stationary traffic excitation is significant and most of the existing output-only structural identification methods could not be used to assess the bridge condition. This study proposes a blind source separation (BSS) method using short time Fourier transform (STFT) for the analysis of non-stationary measurements in time frequency (TF) domain. The proposed method is capable of source component separation from response measurement for underdetermined problems when the number of independent measurements (sensors) is less than that of source component. The proposed method is applied to a cable-stayed bridge in the field for the operational modal identification under different traffic conditions
Stable and total Fenchel duality for DC optimization problems in locally convex spaces
Author name used in this publication: X. Q. Yang.2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Do unsaturated fatty acids have beneficial effect on reduction of stroke risk in hypertensive population?
Abstracts for Chaired Posters: no. CP10BACKGROUND: It has been suggested that monospecific unsaturated fatty acids have potential effect on protection against stroke. Studies on the effect of different categories of fatty acids are lacking. The stroke incidence is high in hypertensive patients. Therefore, we studied the relationship between serum level of 6 categories of fatty acids and stroke incidence in ...postprin
- …