1,012 research outputs found
Quantum correlation in three-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction
We investigate the pairwise thermal quantum discord in a three-qubit XXZ
model with Dzyaloshinskii-Moriya (DM) interaction. We find that the DM
interaction can increase quantum discord to a fixed value in the anti-
ferromagnetic system, but decreases quantum discord to a minimum first, then
increases it to a fixed value in the ferromagnetic system. Abrupt change of
quantum discord is observed, which indicates the abrupt change of groundstate.
Dynamics of pairwise thermal quantum discord is also considered. We show that
thermal discord vanishes in asymptotic limit regardless of its initial values,
while thermal entanglement suddenly disappears at finite time.Comment: 6 pages, 6 figure
High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers.
Dimensional Crossover of Vortex Dynamics Induced by Gd Substitution on Bi2212 Single Crystals
The vortex dynamics of BiSrCaGdCuO
single crystals is investigated by magnetic relaxation and hysteresis
measurements. By substituting with , it is found that the interlayer
Josephson coupling is weakened and the anisotropy is increased, which leads to
the change of vortex dynamics from 3D elastic to 2D plastic vortex creep.
Moreover, the second magnetization peak, which can be observed in samples near
the optimal doping, is absent in the strongly underdoped (with 2D vortex)
region.Comment: 16 Pages, 6 Figures, To appear in Physica
Perturbative QCD analysis of decays
We study the first observed charmless modes, the
decays, in perturbative QCD formalism. The obtained branching ratios
are larger than
from QCD factorization. The comparison of the predicted magnitudes and phases
of the different helicity amplitudes, and branching ratios with experimental
data can test the power counting rules, the evaluation of annihilation
contributions, and the mechanism of dynamical penguin enhancement in
perturbative QCD, respectively.Comment: 14 pages, 2 tables, brief disscussion on hard sacle added, version to
appear in PR
Metamaterial Polarization Converter Analysis: Limits of Performance
In this paper we analyze the theoretical limits of a metamaterial converter
that allows for linear-to- elliptical polarization transformation with any
desired ellipticity and ellipse orientation. We employ the transmission line
approach providing a needed level of the design generalization. Our analysis
reveals that the maximal conversion efficiency for transmission through a
single metamaterial layer is 50%, while the realistic re ection configuration
can give the conversion efficiency up to 90%. We show that a double layer
transmission converter and a single layer with a ground plane can have 100%
polarization conversion efficiency. We tested our conclusions numerically
reaching the designated limits of efficiency using a simple metamaterial
design. Our general analysis provides useful guidelines for the metamaterial
polarization converter design for virtually any frequency range of the
electromagnetic waves.Comment: 10 pages, 11 figures, 2 table
Dynamics of quantum Hall stripes in double-quantum-well systems
The collective modes of stripes in double layer quantum Hall systems are
computed using the time-dependent Hartree-Fock approximation. It is found that,
when the system possesses spontaneous interlayer coherence, there are two
gapless modes, one a phonon associated with broken translational invariance,
the other a pseudospin-wave associated with a broken U(1) symmetry. For large
layer separations the modes disperse weakly for wavevectors perpendicular to
the stripe orientation, indicating the system becomes akin to an array of
weakly coupled one-dimensional XY systems. At higher wavevectors the collective
modes develop a roton minimum associated with a transition out of the coherent
state with further increasing layer separation. A spin wave model of the system
is developed, and it is shown that the collective modes may be described as
those of a system with helimagnetic ordering.Comment: 16 pages including 7 postscript figure
Spectral function of the electron in a superconducting RVB state
We present a model calculation of the spectral function of an electron in a
superconducting resonating valence bond (RVB) state. The RVB state, described
by the phase-string mean field theory is characterized by three important
features: (i) spin-charge separation, (ii) short range antiferromagnetic
correlations, and (iii) holon condensation. The results of our calculation are
in good agreement with data obtained from Angle Resolved Photoemission
Spectroscopy (ARPES) in superconducting Bi 2212 at optimal doping
concentration.Comment: 4 pages, 3 figure
Neutrino Clustering in the Galaxy with a Global Monopole
In spherically symmetric, static spacetime, we show that only j=1/2 fermions
can satisfy both Einstein's field equation and Dirac's equation. It is also
shown that neutrinos are able to have effective masses and cluster in the
galactic halo when they are coupled to a global monopole situated at the
galactic core. Astronomical implications of the results are discussed.Comment: 8 pages, Revtex
Long-distant contribution and radiative decays to light vector meson
The discrepancy between the PQCD calculation and the CLEO data for
() stimulates our interest in
exploring extra mechanism of decay. In this work, we apply an
important non-perturbative QCD effect, i.e., hadronic loop mechanism, to study
radiative decay. Our numerical result shows that the
theoretical results including the hadronic loop contribution and the PQCD
calculation of are consistent with the corresponding
CLEO data of . We expect further experimental
measurement of at BES-III, which will be helpful to
test the hadronic loop effect on decay.Comment: 7 pages, 2 figures. Accepted for publication in Eur. Phys. J.
- …
