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Abstract
In this article, we first establish an existence and uniqueness result for a class of
systems of nonlinear operator equations under more general conditions by means of
the cone theory and monotone iterative technique. Furthermore, the iterative
sequence of the solution and the error estimation of the system are given. Then we
use this new result to study the existence and uniqueness of the solution for
boundary value problems of systems of fractional differential equations with a
Riemann–Stieltjes integral boundary condition in real Banach spaces. The results
obtained in this paper are more general than many previous results and complement
them.
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1 Introduction
In this paper, we first study the following system of nonlinear operator equations in a real
Banach space E by means of the cone theory and monotone iterative technique:

⎧
⎨

⎩

x = A(x, x),

x = B(x, x),
(1.1)

where A, B : D × D → E are two nonlinear operators, D is a subset of E. There have ap-
peared a series of research results concerning the nonlinear operator equation x = A(x, x)
and x = Ax (see, for example, [37]) or the sum of several classes of mixed-monotone op-
erator equations.

In [37], by using the cone theory and Banach contraction mapping principle, Zhang
investigated the existence and uniqueness of solutions for a class of nonlinear operator
equations x = Ax in real Banach spaces. The result is obtained only in the case that the
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cone P is generating and normal and the operator A satisfies

–Bn0 (x – y) ≤ Ax – Ay ≤ Bn0 (x – y), ∀x, y ∈ E, x ≥ y, (1.2)

where A : E → E is a nonlinear operator, B : E → E is a positive linear bounded operator,
n0 is a positive integer.

However, the upper-lower solutions conditions play an important role in [37]. Instead
of supposing the upper-lower solutions conditions, they used a generating normal cone,
which strengthened the conditions. Thus, how to remove these conditions is an interesting
and important question. In this paper, compared with [37], we get Lemma 3.2 for which
we shall not suppose the upper-lower solutions conditions, the generating of the cone and
compactness of the operators. Here, by means of the cone theory and the Banach con-
traction mapping principle, the existence of a unique solution of the system of nonlinear
operator binary equations (1.1) is investigated, furthermore, the iterative sequence of the
solution and the error estimation of the system are given. The theorems obtained in this
paper are more general than many previous results and complement them.

Fractional differential equations, arising in the mathematical modeling of systems and
processes, have drawn more and more attention of the research community due to their
numerous applications in various fields of science such as engineering, chemistry, physics,
mechanics, etc. Boundary value problems of fractional differential equations have been
investigated for many years (see [9, 17, 20, 27, 29, 36]). Now, there are many papers dealing
with the problem for different kinds of boundary value conditions such as multi-point
boundary condition (see [7, 8]), integral boundary condition (see [14–16, 19, 22, 25, 26,
30]), and many other boundary conditions (see [12, 31, 32]). In recent years, the existence
and uniqueness theorems of solutions for boundary value problems of nonlinear fractional
differential equations have been studied extensively in the literature, mainly by using the
fixed point theorem of the mixed-monotone operator (see, for instance, [7, 18, 33, 34] and
their references), a priori estimate method and a maximal principle (see, for instance, [2]),
the Banach contraction mapping principle and the Krasnose’skii fixed point theorem (see,
for instance, [1, 10, 11, 17]).

Here, we use the new result obtained in this paper to study the existence and uniqueness
theorems of solutions for systems of the following simple fractional differential equations
with a Riemann–Stieltjes integral boundary condition in real Banach space E:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dα
0+u(t) = f1(t, u(t), v(t), Dβi

0+u(t), Dγi
0+v(t)), 0 < t < 1, n – 1 < α ≤ n,

–Dα
0+v(t) = f2(t, v(t), u(t), Dβi

0+v(t), Dγi
0+u(t)),

u(κ)(0) = 0, Dβ
0+u(1) =

∫ 1
0 k(s)Dβn–1

0+ u(s) dA(s),

v(κ)(0) = 0, Dβ
0+v(1) =

∫ 1
0 k(s)Dβn–1

0+ v(s) dA(s), κ = 0, 1, 2, . . . , n – 2,

(1.3)

where n ≥ 2, Dα
0+, Dβi

0+, Dγi
0+, Dβ

0+, Dγ
0+ are the standard Riemann–Liouville derivatives. i –

1 < βi, γi ≤ i (i = 1, 2, . . . , n – 1), α – βn–1 > α – β > 1. k : (0, 1) → R+ is continuous with
k ∈ L1(0, 1), and

∫ 1
0 k(s)u(s) dA(s) is the Riemann–Stieltjes integral of u with respect to a

function A of bounded variation. In the following, we denote I = [0, 1]. fi : I × E4 → E
(i = 1, 2) (we do not assume the continuity of fi), for all u, v ∈ C[I, E], fi(·, u(·), v(·)) : I → E
is continuous.



Zhang et al. Advances in Difference Equations  (2018) 2018:204 Page 3 of 15

By means of monotone iterative technique and cone theory, we obtain some new ex-
istence theorems of the solutions and iterative approximation of the unique solution for
the system of fractional differential equations with a Riemann–Stieltjes integral boundary
condition, which does not possess any upper and lower solutions conditions in ordered
Banach spaces. From this paper, we can see that the fixed point theorems in this paper
have extensive applied background.

2 Preliminaries
Now we present briefly some definitions and basic results that are to be used in the article
for convenience of the reader. We refer the reader to [3–6] for more details.

Suppose that (E,‖ · ‖) is a real Banach space, θ is the zero element of E. Recall that
a non-empty closed convex set P ⊂ E is a cone if it satisfies (1) x ∈ P, λ ≥ 0 ⇒ λx ∈ P;
(2) x ∈ P, –x ∈ P ⇒ x = θ . The real Banach space E can be partially ordered by a cone
P ⊂ E, i.e., x ≤ y if and only if y – x ∈ P. If x ≤ y and x 
= y, then we denote x < y or y > x. Let
C[I, E] = {x(t) : I → E | x(t) is continuous}. Then C[I, E] is a Banach space with the norm
‖x‖c = maxt∈I ‖x(t)‖, for x ∈ C[I, E].

Moreover, P is called normal if there exists a constant N > 0 such that, for all x, y ∈ E,
θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, the smallest N is called the normality constant of P. If
x1, x2 ∈ E with x1 ≤ x2 the set [x1, x2] = {x ∈ E | x1 ≤ x ≤ x2} is called the order interval
between x1 and x2.

Definition 2.1 ([4, 6]) Let D be a subset of a real Banach space E. A : D × D → E is said
to be a mixed-monotone operator if A(x, y) is increasing in x, and decreasing in y, i.e., for
all xi, yi ∈ P (i = 1, 2) with x1 ≤ x2, y1 ≥ y2 imply A(x1, y1) ≤ A(x2, y2). The element x ∈ D is
called a fixed point of A if A(x, x) = x.

3 Lemmas
Lemma 3.1 Let E be a real Banach space, P be a normal cone in E, D = [u0, v0] = {x ∈ E |
u0 ≤ x ≤ v0} be the order interval in E. Assume that A, B : D × D → E are two operators
and satisfy the following conditions:

(H0) u0 ≤ A(u0, v0), B(v0, u0) ≤ v0.
(H1) For fixed x ∈ D, A(x, y) and B(x, y) are decreasing in y, and there exist two positive

numbers Mi > 0 (i = 1, 2) such that, for fixed y ∈ D, and for any x1, x2 ∈ D with x1 ≤
x2,

A(x2, y) – A(x1, y) ≥ –M1(x2 – x1),

B(x2, y) – B(x1, y) ≥ –M2(x2 – x1).

(H2) There exist a positive number M3 > 0 and a positive integer n0 such that, for all
x, y ∈ D with x ≤ y,

–M3(y – x) ≤ B(y, x) – A(x, y) ≤ Ln0 (y – x), (3.1)

where L : E → E is a positive bounded linear operator with r(L) < 1.
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Then the system of nonlinear operator equations (1.1) have a unique solution (x∗, x∗) in
D × D. And for any initial values x0, y0 ∈ D with x0 ≤ y0, by constructing successively the
sequences as follows:

⎧
⎨

⎩

xn = 1
1+M [A(xn–1, yn–1) + Mxn–1],

yn = 1
1+M [B(yn–1, xn–1) + Myn–1], n = 1, 2, . . . ,

(3.2)

where M = max{M1, M2, M3} > 0, we have xn → x∗, yn → x∗ in E, as n → ∞. Moreover, for
any δ : r(L) < δ < 1, there exists a positive integer n1 such that

⎧
⎨

⎩

‖xn – x∗‖ ≤ 2N( δn0 +M
1+M )n‖v0 – u0‖, n ≥ n1,

‖yn – x∗‖ ≤ 2N( δn0 +M
1+M )n‖v0 – u0‖, n ≥ n1.

(3.3)

Proof Taking M = max{M1, M2, M3}. Let
⎧
⎨

⎩

F(x, y) = 1
1+M [A(x, y) + Mx],

G(y, x) = 1
1+M [B(y, x) + My], x, y ∈ D,

(3.4)

then (3.2) can be written as
⎧
⎨

⎩

xn = F(xn–1, yn–1),

yn = G(yn–1, xn–1).
(3.5)

By (H1), we can easily prove that F and G satisfy the following conditions:
(A1) F , G : D × D → E are two mixed-monotone operators.
(A2) For all x, y ∈ D with x ≤ y, we have

G(y, x) – F(x, y)

=
1

1 + M
[
B(y, x) + My

]
–

1
1 + M

[
A(x, y) + Mx

]

=
1

1 + M
[(

B(y, x) – A(x, y)
)

+ M(y – x)
]
. (3.6)

Combining with (H2), we can easily prove that

θ ≤ G(y, x) – F(x, y) ≤ H(y – x), ∀x, y ∈ D, x ≤ y, (3.7)

where H � 1
1+M (Ln0 + MI) in which I is the identity operator.

(A3) By (H0), we have

F(u0, v0) =
1

1 + M
[
A(u0, v0) + Mu0

] ≥ 1
1 + M

[u0 + Mu0] = u0, (3.8)

G(v0, u0) =
1

1 + M
[
B(v0, u0) + Mv0

] ≤ 1
1 + M

[v0 + Mv0] = v0, (3.9)

thus, combining with (3.7), we have

u0 ≤ F(u0, v0) ≤ G(v0, u0) ≤ v0. (3.10)
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Let un = F(un–1, vn–1), vn = G(vn–1, un–1) (n = 1, 2, . . .). Thus, by (3.10), we know

u0 ≤ u1 ≤ v1 ≤ v0. (3.11)

Therefore, by (A1) and (A2), using the method of the introduction, we can easily prove
that

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · v1 ≤ v0. (3.12)

The proof will be divided into four steps.
Step 1: We prove that

θ ≤ vn – un ≤ Hn(v0 – u0), n = 1, 2, . . . . (3.13)

Firstly, by (A2), we can easily prove that

θ ≤ v1 – u1 ≤ G(v0, u0) – F(u0, v0) ≤ H(v0 – u0), (3.14)

i.e., (3.13) hold for n = 1. Suppose that (3.13) hold for n = k, i.e.,

θ ≤ vk – uk ≤ Hk(v0 – u0). (3.15)

Then, for n = k + 1, by (A1) and (A2) we know

uk+1 = F(uk , vk) ≤ G(vk , uk) = vk+1,

θ ≤ vk+1 – uk+1 = G(vk , uk) – F(uk , vk) ≤ H(vk – uk) ≤ Hk+1(v0 – u0).
(3.16)

By (3.14)–(3.16) and the method of the introduction, we know that (3.13) holds.
Step 2: We prove that {un} is a Cauchy sequence. In view of r(L) < 1, we know there exists

a positive constant δ which satisfies r(L) < δ < 1. Thus

lim
n→∞

∥
∥Hn∥∥

1
n = r(H) ≤ 1

1 + M
(
r
(
Ln0

)
+ M

)
<

δn0 + M
1 + M

� δ0 < 1,

therefore, there exists a positive integer n1 such that

∥
∥Hn∥∥ < δn

0 , n ≥ n1. (3.17)

Then, by (3.12), we have

θ ≤ un ≤ un+p ≤ vn+p ≤ vn, n, p = 1, 2, . . . . (3.18)

Consequently, by (3.13) and (3.18), we have

θ ≤ un+p – un ≤ vn – un ≤ Hn(v0 – u0),

θ ≤ vn – vn+p ≤ vn – un ≤ Hn(v0 – u0), n, p = 1, 2, . . . .
(3.19)
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Therefore, by the normality of cone P and (3.19), we have

‖un+p – un‖ ≤ N
∥
∥Hn(v0 – u0)

∥
∥ ≤ Nδn

0‖v0 – u0‖,

‖vn – vn+p‖ ≤ N
∥
∥Hn(v0 – u0)

∥
∥ ≤ Nδn

0‖v0 – u0‖, n ≥ n1, p = 1, 2, . . . ,
(3.20)

where N is the normality constant of P. Consequently, {un} and {vn} are two Cauchy se-
quences. Since E is complete, there exist u∗, v∗ ∈ E such that

lim
n→∞ un = u∗, lim

n→∞ vn = v∗. (3.21)

And by (3.12), we know

un ≤ u∗ ≤ v∗ ≤ vn, n = 0, 1, 2, . . . , (3.22)

thus, u∗, v∗ ∈ D. By (3.19) and (3.22), we have

θ ≤ v∗ – u∗ ≤ vn – un ≤ Hn(v0 – u0), n = 0, 1, 2, . . . . (3.23)

Thus, by the normality of cone P, we have

∥
∥v∗ – u∗∥∥ ≤ N

∥
∥Hn(v0 – u0)

∥
∥ ≤ Nδn

0‖v0 – u0‖ → 0, n → ∞,

and thus u∗ = v∗. Let x∗ := u∗ = v∗ and then, by (A1) and (A2), we have

un+1 = F(un, vn) ≤ F
(
x∗, x∗) ≤ G

(
x∗, x∗) ≤ G(vn, un) = vn+1, n = 1, 2, . . . . (3.24)

Let n → ∞ in the former inequality, we have F(x∗, x∗) = G(x∗, x∗) = x∗, therefore, by the
definitions of F and G, we have x∗ = A(x∗, x∗), x∗ = B(x∗, x∗), i.e., (x∗, x∗) is the solution of
operator equation (1.1).

Step 3: We prove that (x∗, x∗) is the unique solution of operator equations (1.1) in D × D.
In fact, suppose (x, x) is another solution of Eqs. (1.1) in D × D, then, by (A1) and the
method of the introduction, we easily see that un ≤ x ≤ vn (n = 1, 2, . . .). Thus, by (3.21)
and the normality of P, we have x = x∗. Therefore, the operator equations (1.1) have a
unique solution (x∗, x∗) in D × D.

Step 4: We prove that (3.3) holds. Since x0, y0 ∈ D, i.e., u0 ≤ x0 ≤ y0 ≤ v0. Suppose

un–1 ≤ xn–1 ≤ yn–1 ≤ vn–1,

then, by (A1) and the method of the introduction, we can easily prove that

un ≤ xn ≤ yn ≤ vn, n = 0, 1, 2, . . . . (3.25)

By (3.13) and (3.25), we have

θ ≤ xn – un ≤ vn – un ≤ Hn(v0 – u0), (3.26)

θ ≤ x∗ – un ≤ vn – un ≤ Hn(v0 – u0). (3.27)
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Thus, by (3.17), (3.26) and (3.27), we obtain

∥
∥xn – x∗∥∥ ≤ ‖xn – un‖ +

∥
∥x∗ – un

∥
∥

≤ 2N
∥
∥Hn(v0 – u0)

∥
∥

≤ 2Nδn
0‖v0 – u0‖

= 2N
(

δn0 + M
1 + M

)n

‖v0 – u0‖, n ≥ n1. (3.28)

In the same way, we can prove that

∥
∥yn – x∗∥∥ ≤ 2Nδn

0‖v0 – u0‖ = 2N
(

δn0 + M
1 + M

)n

‖v0 – u0‖, n ≥ n1. (3.29)

Consequently, by (3.28) and (3.29), we know that (3.3) holds. Therefore, the proof of
Lemma 3.1 is completed. �

Lemma 3.2 Let E be a real Banach space, P be a normal cone in E. Assume that A, B :
P × P → P are two operators and satisfy the following conditions:

(J0) For fixed x ∈ P, A(x, y) and B(x, y) are decreasing in y, and there exist two positive
numbers Mi > 0 (i = 1, 2) such that, for fixed y ∈ P, and for any x1, x2 ∈ P with x1 ≤ x2,

A(x2, y) – A(x1, y) ≥ –M1(x2 – x1),

B(x2, y) – B(x1, y) ≥ –M2(x2 – x1).

(J1) There exist a positive bounded linear operator L1 : E → E with r(L1) < 1, a positive
integer m0 and h ∈ P such that, for all x ∈ P,

B(x, θ ) ≤ Lm0
1 x + h. (3.30)

(J2) There exist a positive bounded linear operator L2 : E → E with r(L2) < 1, a positive
integer n0 and a positive number M3 > 0 such that, for all x, y ∈ P, x ≤ y,

–M3(y – x) ≤ B(y, x) – A(x, y) ≤ Ln0
2 (y – x). (3.31)

Then the system of nonlinear operator equations (1.1) have a unique positive solution
(x∗, x∗) in [θ , w0]× [θ , w0], where w0 = (I – Lm0

1 )–1h =
∑∞

n=0 Lm0n
1 h. And for any initial values

x0, y0 ∈ [θ , w0], x0 ≤ y0, by constructing successively the sequences as follows:
⎧
⎨

⎩

xn = 1
1+M [A(xn–1, yn–1) + Mxn–1],

yn = 1
1+M [B(yn–1, xn–1) + Myn–1], n = 1, 2, . . . ,

(3.32)

where M = max{M1, M2, M3} > 0, we have xn → x∗, yn → x∗ in E, as n → ∞. Moreover, for
any r(L2) < δ < 1, there exists a positive integer n1 such that

⎧
⎨

⎩

‖xn – x∗‖ ≤ 2N( δn0 +M
1+M )n‖v0 – u0‖, n ≥ n1,

‖yn – x∗‖ ≤ 2N( δn0 +M
1+M )n‖v0 – u0‖, n ≥ n1.

(3.33)
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Proof From (J1), we know L1(P) ⊂ P and r(L1) < 1, thus r(Lm0
1 ) < 1, therefore,

w0 =
(
I – Lm0

1
)–1h =

∞∑

n=0

Lm0n
1 h ∈ P, (3.34)

consequently, B(w0, θ ) ≤ Lm0
1 w0 + h = w0. On the other hand, since A : P × P → P, we have

A(θ , w0) ≥ θ .
Taking u0 = θ , v0 = w0, then A(θ , v0) ≥ θ and B(v0, θ ) ≤ v0. Consequently, by Lemma 3.1,

the conclusions hold. Therefore, the proof of Lemma 3.2 is completed. �

4 Main result
Let E be a real Banach space, P be a normal cone in E. In this section, we consider the
existence and uniqueness of the solution as well as iterative approximation of the system
of fractional differential equations (1.3) with a Riemann–Stieltjes integral boundary con-
dition in ordered Banach spaces E:

Now we present briefly some definitions, lemmas, and basic results that are to be used
in the article for convenience of the reader. We refer the reader to [13, 14, 21, 23–25, 28,
35] for more details.

Definition 4.1 ([13, 21, 23, 24]) The Riemann–Liouville fractional integral of order α > 0
of a function u : (0, +∞) →R is given by

Iα
0+ u(t) =

1
	(α)

∫ t

0
(t – s)α–1u(s) ds

provided that the right-hand side is pointwise defined on (0, +∞).

Definition 4.2 ([13, 21, 23, 24]) The Riemann–Liouville fractional derivative of order α >
0 of a continuous function u : (0, +∞) →R is given by

Dα
0+ u(t) =

1
	(n – α)

(
d
dt

)n ∫ t

0

u(s)
(t – s)α–n+1 ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-
hand side is pointwise defined on (0, +∞).

Lemma 4.3 ([13, 21, 23, 24])
(1) If u ∈ L1(0, 1) and α > β > 0, then

Iα
0+ Iβ

0+ u(t) = Iα+β

0+ u(t), Dβ

0+ Iα
0+ u(t) = Iα–β

0+ u(t), Dβ

0+ Iβ

0+ u(t) = u(t). (4.1)

(2) If u ∈ L1(0, 1) and α > β > 0, then Dα
0+ u(t) = 0 has the unique solution

f (t) = c1tα–1 + c2tα–2 + · · · + cntα–n, (4.2)

where ci ∈R (i = 0, 1, 2, . . . , n), n = [α] + 1.
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Lemma 4.4 ([13, 21, 23, 24]) Let α > 0 and let f (x) be integrable. Then

Iα
0+ Dα

0+ f (u) = f (u) + c1uα–1 + c2uα–2 + · · · + cnuα–n, (4.3)

where ci ∈R (i = 1, 2, . . . , n), n is the smallest integer greater than or equal to α.

Lemma 4.5 ([19]) Let f1, f2 be as in (1.3), and x(t) = Dβn–1
0+ u(t), y(t) = Dβn–1

0+ v(t). Then the
problem (1.3) is transformed to the following equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα–βn–1
0+ x(t) + f1(t, Iβn–1–n+2

0+ x(t), Iβn–1–n+2
0+ y(t), Iβn–1–βi

0+ x(t), Iβn–1–γi
0+ y(t)) = 0,

Dα–βn–1
0+ y(t) + f2(t, Iβn–1–n+2

0+ y(t), Iβn–1–n+2
0+ x(t), Iβn–1–βi

0+ y(t), Iβn–1–γi
0+ x(t)) = 0,

Iβn–1–n+2
0+ x(0) = 0, Iβ–βn–1–n+2

0+ x(1) =
∫ 1

0 l(s)x(s) dA(s),

Iβn–1–n+2
0+ y(0) = 0, Iβ–βn–1–n+2

0+ y(1) =
∫ 1

0 l(s)y(s) dA(s).

(4.4)

Furthermore, assume that 0 ≤ δ < 	(α–βn–1)
	(α–β) , then the solution of (4.4) is equivalent to the

solution of the following fractional integral equation:

⎧
⎨

⎩

x(t) =
∫ 1

0 G(t, s)f1(t, Iβn–1–n+2
0+ x(s), Iβn–1–n+2

0+ y(s), Iβn–1–βi
0+ x(s), Iβn–1–γi

0+ y(s)) ds,

y(t) =
∫ 1

0 G(t, s)f2(t, Iβn–1–n+2
0+ y(s), Iβn–1–n+2

0+ x(s), Iβn–1–βi
0+ y(s), Iβn–1–γi

0+ x(s)) ds,
(4.5)

where

G(t, s) = K(t, s) +
tα–βn–1–1

	(α–βn–1)
	(α–β) – δ

ga(s),

in which

K(t, s) =
1

	(α – βn–1)

⎧
⎨

⎩

tα–βn–1–1(1 – s)α–β–1, 0 ≤ t ≤ s ≤ 1,

tα–βn–1–1(1 – s)α–β–1 – (t – s)α–βn–1–1, 0 ≤ s ≤ t ≤ 1,

δ =
∫ 1

0
tα–βn–1–1k(t) dA(t),

ga(s) =
∫ 1

0
K(t, s)k(t) dA(t).

(4.6)

Moreover, if x(t) = Dβn–1
0+ u(t), y(t) = Dβn–1

0+ v(t) is the positive solution of (4.4) then u(t) =
Iβn–1

0+ x(t), v(t) = Iβn–1
0+ y(t) is a positive solution of problem (1.3).

Lemma 4.6 ([19]) Let 0 ≤ δ < 	(α–βn–1)
	(α–β) and ga(s) ≥ 0, s ∈ [0, 1], the Green function G(t, s)

have the following properties:
(1) G : [0, 1] × [0, 1] → R+ is continuous and G(t, s) > 0 for all t, s ∈ (0, 1);
(2) For any t, s ∈ [0, 1], we have tα–βn–1–1φ(s) ≤ G(t, s) ≤ φ(s), where

φ(s) = K(1, s) +
ga(s)

	(α–βn–1)
	(α–β) – δ

, s ∈ [0, 1].

In the following we need the following assumptions:
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(H1) fi : I ×E4 → E is continuous and satisfies, for all xi, yi ∈ E (i = 1, 2, 3, 4), with y1 ≥ x1,
y2 ≤ x2, y3 ≥ x3, y4 ≤ x4,

fi(t, y1, y2, y3, y4) – fi(t, x1, x2, x3, x4) ≥ 0, ∀t ∈ I, i = 1, 2; (4.7)

(H2) There exist three positive Lebesgue integrable functions a, b, c ∈ L1(I,R+) such that
for all x, y ∈ E, t ∈ I ,

f2(t, x, θ , y, θ ) ≤ a(t)x + b(t)y + c(t)e, (4.8)

where e is a unit element in E;
(H3) There exist four constants ri > 0 (i = 1, 2, 3, 4) such that, for any t ∈ I , xi, yi ∈ E (i =

1, 2, 3, 4) with x1 ≤ y1, x2 ≥ y2, x3 ≤ y3, x4 ≥ y4,

0 ≤ f2(t, y1, y2, y3, y4) – f1(t, x1, x2, x3, x4)

≤ r1(y1 – x1) + r2(x2 – y2) + r3(y3 – x3) + r4(x4 – y4); (4.9)

(H4) maxt∈I
∫ 1

0 |G̃(t, s)|ds < 1, maxt∈I
∫ 1

0 |G(t, τ )|dτ < 1, where

G̃(t, s) =
1

	(βn–1 – n + 2)

(∫ τ

1
G(t, s)a(s)(s – τ )βn–1–n+1 ds

)

+
1

	(βn–1 – βi)

(∫ τ

1
G(t, s)b(s)(s – τ )βn–1–βi–1 ds

)

,

G(t, s) =
r1 + r2

	(βn–1 – n + 2)

(∫ τ

1
G(t, s)(s – τ )βn–1–n+1 ds

)

+
r3 + r4

	(βn–1 – βi)

(∫ τ

1
G(t, s)(s – τ )βn–1–βi–1 ds

)

.

Theorem 4.7 Let E be a real Banach space, P be a normal cone in E. Assume that the
conditions (H1)–(H4) are satisfied. Then the system of nonlinear differential equations (1.3)
have the unique positive symmetry solution (w∗, w∗) ∈ D × D, where D = [θ , w0] ⊂ C[I, E],
w0 is defined as in Lemma 3.2. Moreover, for any initial functions x0, y0 ∈ D, there exist
monotone iteration sequences {xn} and {yn}, such that xn → w∗, yn → w∗ in C[I, E], as
n → ∞, where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn(t) =
∫ 1

0 G(t, s)f1(t, Iβn–1–n+2
0+ xn–1(s), Iβn–1–n+2

0+ yn–1(s),

Iβn–1–βi
0+ xn–1(s), Iβn–1–γi

0+ yn–1(s)) ds,

yn(t) =
∫ 1

0 G(t, s)f2(t, Iβn–1–n+2
0+ yn–1(s), Iβn–1–n+2

0+ xn–1(s),

Iβn–1–βi
0+ yn–1(s), Iβn–1–γi

0+ xn–1(s)) ds,

t ∈ I, n = 1, 2, 3, . . . .

(4.10)

Proof It is well known that (u, v) ∈ C[I, E] × C[I, E] is a solution of the system (1.3) if and
only if (x, y) ∈ C[I, E] × C[I, E] is a solution of the system of nonlinear integral equations

⎧
⎨

⎩

x(t) =
∫ 1

0 G(t, s)f1(t, Iβn–1–n+2
0+ x(s), Iβn–1–n+2

0+ y(s), Iβn–1–βi
0+ x(s), Iβn–1–γi

0+ y(s)) ds,

y(t) =
∫ 1

0 G(t, s)f2(t, Iβn–1–n+2
0+ y(s), Iβn–1–n+2

0+ x(s), Iβn–1–βi
0+ y(s), Iβn–1–γi

0+ x(s)) ds.
(4.11)
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Consider the operators A, B : D × D → C[I, E] as follows:

A(x, y)(t) =
∫ 1

0
G(t, s)f1

(
t, Iβn–1–n+2

0+ x(s), Iβn–1–n+2
0+ y(s),

Iβn–1–βi
0+ x(s), Iβn–1–γi

0+ y(s)
)

ds,

B(y, x)(t) =
∫ 1

0
G(t, s)f2

(
t, Iβn–1–n+2

0+ y(s), Iβn–1–n+2
0+ x(s),

Iβn–1–βi
0+ y(s), Iβn–1–γi

0+ x(s)
)

ds,

x, y ∈ D, t ∈ I.

(4.12)

Then D × D → C[I, E]. By Lemma 4.6 and (H1), for all t ∈ I , (x1, y1), (x2, u2) ∈ D × D,
x1 ≤ x2, y1 ≥ y2, we obtain

A(x2, y2)(t) – A(x1, y1)(t)

=
∫ 1

0
G(t, s)f1

(
t, Iβn–1–n+2

0+ x2(s), Iβn–1–n+2
0+ y2(s), Iβn–1–βi

0+ x2(s), Iβn–1–γi
0+ y2(s)

)
ds

–
∫ 1

0
G(t, s)f1

(
t, Iβn–1–n+2

0+ x1(s), Iβn–1–n+2
0+ y1(s), Iβn–1–βi

0+ x1(s), Iβn–1–γi
0+ y1(s)

)
ds

≥ 0, (4.13)

B(x2, y2)(t) – B(x1, y1)(t)

=
∫ 1

0
G(t, s)f2

(
t, Iβn–1–n+2

0+ x2(s), Iβn–1–n+2
0+ y2(s), Iβn–1–βi

0+ x2(s), Iβn–1–γi
0+ y2(s)

)
ds

–
∫ 1

0
G(t, s)f2

(
t, Iβn–1–n+2

0+ x1(s), Iβn–1–n+2
0+ y1(s), Iβn–1–βi

0+ x1(s), Iβn–1–γi
0+ y1(s)

)
ds

≥ 0. (4.14)

Consequently, A, B : D × D → C[I, E] are mixed-monotone. By (H2), for all x ∈ D, t ∈ I , we
obtain

B(x, θ )(t) =
∫ 1

0
G(t, s)f2

(
s, Iβn–1–n+2

0+ x(s), 0, Iβn–1–βi
0+ x(s), 0

)
ds

≤
∫ 1

0
G(t, s)

(
a(s)Iβn–1–n+2

0+ x(s) + b(s)Iβn–1–βi
0+ x(s) + c(s)e

)
ds

≤
∫ 1

0
G(t, s)a(s)

(
1

	(βn–1 – n + 2)

∫ s

0
(s – τ )βn–1–n+1x(τ ) dτ

)

ds

+
∫ 1

0
G(t, s)b(s)

(
1

	(βn–1 – βi)

∫ s

0
(s – τ )βn–1–βi–1x(τ ) dτ

)

ds

+ e
∫ 1

0
G(t, s)c(s) ds

=
∫ 1

0

1
	(βn–1 – n + 2)

(∫ τ

1
G(t, s)a(s)(s – τ )βn–1–n+1 ds

)

x(τ ) dτ

+
∫ 1

0

1
	(βn–1 – βi)

(∫ τ

1
G(t, s)b(s)(s – τ )βn–1–βi–1 ds

)

x(τ ) dτ
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+ e
∫ 1

0
G(t, s)c(s) ds

= L1x(t) + h(t), (4.15)

where

L1x(t) =
∫ 1

0

[
1

	(βn–1 – n + 2)

(∫ τ

1
G(t, s)a(s)(s – τ )βn–1–n+1 ds

)

+
1

	(βn–1 – βi)

(∫ τ

1
G(t, s)b(s)(s – τ )βn–1–βi–1 ds

)]

x(τ ) dτ ,

h(t) = e
∫ 1

0
G(t, s)c(s) ds.

Set

G̃(t, s) =
1

	(βn–1 – n + 2)

(∫ τ

1
G(t, s)a(s)(s – τ )βn–1–n+1 ds

)

+
1

	(βn–1 – βi)

(∫ τ

1
G(t, s)b(s)(s – τ )βn–1–βi–1 ds

)

,

then L1x(t) =
∫ 1

0 G̃(t, s)x(s) ds. In the following we prove r(L1) < 1. In fact, by (H4), since
maxt∈I

∫ 1
0 |G̃(t, s)|ds < 1, there exists a constant m1 : 0 < m1 < 1 such that

∫ 1
0 |G̃(t, s)|ds ≤

m1 < 1, for any t ∈ I . Thus, for all t ∈ I , x ∈ D,

∥
∥(L1x)(t)

∥
∥ =

∥
∥
∥
∥

∫ 1

0
G̃(t, s)x(s) ds

∥
∥
∥
∥

≤
∫ 1

0

∥
∥G̃(t, s)x(s)

∥
∥ds

≤
∫ 1

0

∣
∣G̃(t, s)

∣
∣ds‖x‖c

≤ m1‖x‖c, t ∈ I, (4.16)

∥
∥
(
L2

1x
)
(t)

∥
∥ =

∥
∥
∥
∥

∫ 1

0
G̃(t, s)(L1x)(s) ds

∥
∥
∥
∥

≤
∫ 1

0

∥
∥G̃(t, s)(L1x)(s)

∥
∥ds

≤
∫ 1

0

∣
∣G̃(t, s)

∣
∣ds

∥
∥(L1x)(s)

∥
∥

≤
(∫ 1

0

∣
∣G̃(t, s)

∣
∣ds

)

m1‖x‖c

≤ m2
1‖x‖c, t ∈ I. (4.17)

By the method of the introduction, we can easily prove that, for all natural numbers n,

∥
∥
(
Ln

1x
)
(t)

∥
∥ ≤ mn

1‖x‖c, t ∈ I, (4.18)
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therefore
∥
∥Ln

1x
∥
∥

c = max
t∈I

∥
∥
(
Ln

1x
)
(t)

∥
∥ ≤ mn

1‖x‖c, (4.19)

consequently
∥
∥Ln

1
∥
∥ ≤ mn

1, (4.20)

thus, r(L1) = limn→∞ ‖Ln
1‖ 1

n ≤ m1 < 1.
By (H3), for any t ∈ I , x, y ∈ D with x ≤ y,

B(y, x)(t) – A(x, y)(t)

=
∫ 1

0
G(t, s)f2

(
t, Iβn–1–n+2

0+ y(s), Iβn–1–n+2
0+ x(s), Iβn–1–βi

0+ y(s), Iβn–1–γi
0+ x(s)

)
ds

–
∫ 1

0
G(t, s)f1

(
t, Iβn–1–n+2

0+ x(s), Iβn–1–n+2
0+ y(s), Iβn–1–βi

0+ x(s), Iβn–1–γi
0+ y(s)

)
ds

≥ 0, (4.21)

B(y, x)(t) – A(x, y)(t)

=
∫ 1

0
G(t, s)f2

(
t, Iβn–1–n+2

0+ y(s), Iβn–1–n+2
0+ x(s), Iβn–1–βi

0+ y(s), Iβn–1–γi
0+ x(s)

)
ds

–
∫ 1

0
G(t, s)f1

(
t, Iβn–1–n+2

0+ x(s), Iβn–1–n+2
0+ y(s), Iβn–1–βi

0+ x(s), Iβn–1–γi
0+ y(s)

)
ds

≤
∫ 1

0
G(t, s)r1

(
Iβn–1–n+2

0+ y(s) – Iβn–1–n+2
0+ x(s)

)
ds

+
∫ 1

0
G(t, s)r2

(
Iβn–1–n+2

0+ y(s) – Iβn–1–n+2
0+ x(s)

)
ds

+
∫ 1

0
G(t, s)r3

(
Iβn–1–βi

0+ y(s) – Iβn–1–βi
0+ x(s)

)
ds

+
∫ 1

0
G(t, s)r4

(
Iβn–1–βi

0+ y(s) – Iβn–1–βi
0+ x(s)

)
ds

=
∫ 1

0
G(t, s)(r1 + r2)Iβn–1–n+2

0+
(
y(s) – x(s)

)
ds

+
∫ 1

0
G(t, s)(r3 + r4)Iβn–1–βi

0+
(
y(s) – x(s)

)
ds

=
∫ 1

0
G(t, s)(r1 + r2)

(
1

	(βn–1 – n + 2)

∫ s

0
(s – τ )βn–1–n+1(y(τ ) – x(τ )

)
dτ

)

ds

+
∫ 1

0
G(t, s)(r3 + r4)

(
1

	(βn–1 – βi)

∫ s

0
(s – τ )βn–1–βi–1(y(τ ) – x(τ )

)
dτ

)

ds

=
∫ 1

0

r1 + r2

	(βn–1 – n + 2)

(∫ τ

1
G(t, s)(s – τ )βn–1–n+1 ds

)
(
y(τ ) – x(τ )

)
dτ

+
∫ 1

0

r3 + r4

	(βn–1 – βi)

(∫ τ

1
G(t, s)(s – τ )βn–1–βi–1 ds

)
(
y(τ ) – x(τ )

)
dτ

= L2(y – x)(t), (4.22)
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where

L2x(t) =
∫ 1

0

[
r1 + r2

	(βn–1 – n + 2)

(∫ τ

1
G(t, s)(s – τ )βn–1–n+1 ds

)

+
r3 + r4

	(βn–1 – βi)

(∫ τ

1
G(t, s)(s – τ )βn–1–βi–1 ds

)]

x(τ ) dτ .

Set

G(t, s) =
r1 + r2

	(βn–1 – n + 2)

(∫ τ

1
G(t, s)(s – τ )βn–1–n+1 ds

)

+
r3 + r4

	(βn–1 – βi)

(∫ τ

1
G(t, s)(s – τ )βn–1–βi–1 ds

)

,

then L2x(t) =
∫ 1

0 G(t, s)x(s) ds. Consequently, for any x, y ∈ D with x ≤ y,

θ ≤ B(y, x) – A(x, y) ≤ L2(y – x). (4.23)

Using the same method as in the proof of r(L1) < 1, we can prove that r(L2) < 1.
Thus all conditions of Lemma 3.2 are satisfied, therefore the conclusions of Theorem 4.7

hold. Consequently, the proof of Theorem 4.7 is completed. �
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