8 research outputs found

    Improvement of corrosion resistance in NaOH solution and glass forming ability of as-cast Mg-based bulk metallic glasses by microalloying

    Get PDF
    The influences of the addition of Ag on the glass forming ability (GFA) and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD) and electrochemical polarization in 0.1 mol/L NaOH solution. Results shows that the GFA of the Mg-Ni-based BMGs can be improved dramatically by the addition of an appropriate amount of Ag; and the addition element Ag can improve the corrosion resistance of Mg-Ni-based bulk metallic glass. The large difference in atomic size and large negative mixing enthalpy in alloy system can contribute to the high GFA. The addition element Ag improves the forming speed and the stability of the passive film, which is helpful to decrease the passivation current density and to improve the corrosion resistance of Mg-Ni-based bulk metallic glass

    Operation optimization strategy of a BIPV-battery storage hybrid system

    No full text
    Building integrated photovoltaic (BIPV) system attracts increasing attention of researchers due to environmentally friendly and saving land resource. Combining storage battery with BIPV can improve the flexibility of the entire system, which is promising for distributed renewable energy application. However, how to optimally dispatch the hourly energy flow of PV panel, storage battery and power grid based on a building load is crucial and less investigated. In the paper, a multi-restricted condition nonlinear optimization model is established for a BIPV-battery storage hybrid system under different building loads at a clear day. The optimization model was solved by fmincon function through MATLAB code. In the optimization, overall minimum daily cost including facility cost of the hybrid system, electric price and carbon price were considered as objective function to obtain optimal operation strategy of hourly power distributions of PV, battery and grid for daily building consumption. The key finding indicates that the system has high dependence on power gird when the office building load is heavy, while reduces the depending of power grid as the electrical demand is decreased. Under full-load resident building scenario, when the system with battery cost of 800 Yuan/kW·h or higher, the redundant green power generated by photovoltaic (PV) is sold to power grid in real time to earn extra profit, while the green power is accumulated in the storage batteries as storage battery cost is declined. Moreover, the resident building with BIPV-battery storage hybrid system has less dependence on power gird during day time, realizing self-sufficiency. Under all the scenarios, high storage battery cost limits the capacity of storage battery. And the CO2 emission is reduced as the BIPV-battery storage hybrid system is adopted

    Boronate Affinity Fluorescent Nanoparticles for Förster Resonance Energy Transfer Inhibition Assay of cis-Diol Biomolecules

    No full text
    Förster resonance energy transfer (FRET) has been essential for many applications, in which an appropriate donor–acceptor pair is the key. Traditional dye-to-dye combinations remain the working horses but are rather nonspecifically susceptive to environmental factors (such as ionic strength, pH, oxygen, etc.). Besides, to obtain desired selectivity, functionalization of the donor or acceptor is essential but usually tedious. Herein, we present fluorescent poly­(<i>m</i>-aminophenylboronic acid) nanoparticles (poly­(mAPBA) NPs) synthesized via a simple procedure and demonstrate a FRET scheme with suppressed environmental effects for the selective sensing of cis-diol biomolecules. The NPs exhibited stable fluorescence properties, resistance to environmental factors, and a Förster distance comparable size, making them ideal donor for FRET applications. By using poly­(mAPBA) NPs and adenosine 5′-monophosphate modified graphene oxide (AMP-GO) as a donor and an acceptor, respectively, an environmental effects-suppressed boronate affinity-mediated FRET system was established. The fluorescence of poly­(mAPBA) NPs was quenched by AMP-GO while it was restored when a competing cis-diol compounds was present. The FRET system exhibited excellent selectivity and improved sensitivity toward cis-diol compounds. Quantitative inhibition assay of glucose in human serum was demonstrated. As many cis-diol compounds such as sugars and glycoproteins are biologically and clinically significant, the FRET scheme presented herein could find more promising applications
    corecore