1,147 research outputs found

    Non-Equilibrium Structural and Dynamic Behaviors of Polar Active Polymer Controlled by Head Activity

    Full text link
    Thermodynamic behavior of polymer chains out of equilibrium is a fundamental problem in both polymer physics and biological physics. By using molecular dynamics simulation, we discover a general non-equilibrium mechanism that controls the conformation and dynamics of polar active polymer, i.e., head activity commands the overall chain activity, resulting in re-entrant swelling of active chains and non-monotonic variation of Flory exponent ν\nu. These intriguing phenomena lie in the head-controlled railway motion of polar active polymer, from which two oppose non-equilibrium effects emerge, i.e., dynamic chain rigidity and the involution of chain conformation characterized by the negative bond vector correlation. The competition between these two effects determines the polymer configuration. Moreover, we identify several generic dynamic features of polar active polymers, i.e., linear decay of the end-to-end vector correlation function, polymer-size dependent crossover from ballistic to diffusive dynamics, and a polymer-length independent diffusion coefficient that is sensitive to head activity. A simple dynamic theory is proposed to faithfully explain these interesting dynamic phenomena. This sensitive structural and dynamical response of active polymer to its head activity provides us a practical way to control active-agents with applications in biomedical engineering.Comment: 9 pages, 5 figure

    Prokineticin 2 Is a Target Gene of Proneural Basic Helix-Loop-Helix Factors for Olfactory Bulb Neurogenesis

    Get PDF
    Prokineticin 2, a cysteine-rich secreted protein, regulates diverse biological functions including the neurogenesis of olfactory bulb. Here we show that the PK2 gene is a functional target gene of proneural basic helix-loop-helix (bHLH) factors. Neurogenin 1 and MASH1 activate PK2 transcription by binding to E-box motifs on the PK2 promoter with the same set of E-boxes critical for another pair of bHLH factors, CLOCK and BMAL1, in the regulation of circadian clock. Our results establish PK2 as a common functional target gene for different bHLH transcriptional factors in mediating their respective functions

    Efficient nano iron particle-labeling and noninvasive MR imaging of mouse bone marrow-derived endothelial progenitor cells

    Get PDF
    In this study, we sought to label mouse bone marrow-derived endothelial progenitor cells (EPCs) with Resovist® in vitro and to image them using 7.0 Tesla (T) magnetic resonance imaging (MRI). Mouse bone marrow-derived EPCs were cultured in endothelial basal medium with endothelial growth supplement. They were then characterized by immunocytochemistry, flow cytometry, and fluorescence quantitative polymerase chain reaction. Their functions were evaluated by measuring their uptake of 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine-labeled acetylated low-density lipoprotein (Dil-Ac-LDL), binding of fluorine isothiocyanate (FITC)-labeled Ulex europaeus agglutinin (UEA), and formation of capillary-like networks. EPCs were labeled with superparamagnetic iron oxide (SPIO) and their proliferation was then assessed in a water-soluble tetrazolium (WST-8)-based cell proliferation assay. Spin echo sequence (multislice, multiecho [MSME]) and gradient echo sequence (2D-FLASH) were used to detect differences in the numbers of labeled cells by 7.0 T MRI. The results showed that the cultured cells were of “cobblestone”-like shape and positive for CD133, CD34, CD31, von Willebrand factor, kinase domain receptor, and CD45, but negative for F4/80. They could take up Dil-Ac-LDL, bind FITC-UEA, and form capillary-like networks on Matrigel in vitro. Prussian-blue staining demonstrated that the cells were efficiently labeled with SPIO. The single-cell T2* effect was more obvious in the 2D-FLASH sequence than in the MSME sequence. Further, there were almost no adverse effects on cell vitality and proliferation. In conclusion, mouse bone marrow-derived EPCs can be efficiently labeled with SPIO and imaged with 7.0-T MRI. They may thus be traced by MRI following transplantation for blood vessel disorders and cancer treatment

    Effect of Ginkgo biloba extract on the expressions of Cox-2 and GST-Pi in rats with hepatocellular carcinoma risk

    Get PDF
    Background: Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers worldwide, and the pathogenesis is very complicated at present. There is rare effective therapeutic measure, and the novel therapeutic strategies are urgently required to improve clinical outcome. Ginkgo biloba extract (EGb) is reported to be with an anti-cancer activity. Objectives: This study was performed to explore the effect of EGb on expressions of cyclooxygenase-2 (Cox-2) and glutathione S-transferase Pi (GST-Pi) in the pathogenesis of HCC risk. Methods: 120 Wistar rats were divided into three groups at random: normal control group (control group), HCC risk group without treatment (HCC risk group), HCC risk group treated with EGb (EGb group); n=40, respectively. The HCC risk in rat was induced by aflatoxin B1 injection. At the end of 13-week, 33-week, 53-week and 73-week, 10 rats in each group were killed and the relevant samples were collected. Results: The mRNA and protein expressions of Cox-2 and GST-Pi were measured by real-time reverse transcription polymerase chain reaction, immunohistochemical analysis and western-blot. When compared with those in control group in 73-week, the mRNA and protein expressions of GST-Pi in EGb group were weakened than those in HCC risk group in 73-week. However, the mRNA and protein expressions of Cox-2 in HCC risk group were increased than that of control group, and there was no statistical difference for mRNA and protein expressions of Cox-2 between HCC risk group and EGb group. Conclusion: EGb can regulate the expression of GST-Pi, but it can’t take an effect on the Cox-2 expression in the liver of HCC risk rats.Keywords: Hepatocellular carcinoma (HCC); Ginkgo biloba extract (EGb); Cox-2; GST-PiAfrican Health sciences Vol 14 No. 1 March 201

    Impaired pain sensation in mice lacking prokineticin 2

    Get PDF
    Prokineticins (PKs), consisting of PK1 and PK2, are a pair of newly identified regulatory peptides. Two closely related G-protein coupled receptors, PKR1 and PKR2, mediate the signaling of PKs. PKs/PKRs participate in the regulation of diverse biological processes, ranging from development to adult physiology. A number of studies have indicated the involvement of PKs/PKRs in nociception. Here we show that PK2 is a sensitizer for nociception. Intraplantar injection of recombinant PK2 resulted in a strong and localized hyperalgesia with reduced thresholds to nociceptive stimuli. PK2 mobilizes calcium in dissociated dorsal root ganglion (DRG) neurons. Mice lacking the PK2 gene displayed strong reduction in nociception induced by thermal and chemical stimuli, including capsaicin. However, PK2 mutant mice showed no difference in inflammatory response to capsaicin. As the majority of PK2-responsive DRG neurons also expressed transient receptor potential vanilloid (TRPV1) and exhibited sensitivity to capsaicin, TRPV1 is likely a significant downstream molecule of PK2 signaling. Taken together, these results reveal that PK2 sensitize nociception without affecting inflammation

    Position as Well as Velocity Dependence of Spasticity—Four-Dimensional Characterizations of Catch Angle

    Get PDF
    We investigated the muscle alterations related to spasticity in stroke quantitatively using a portable manual spasticity evaluator.Methods: Quantitative neuro-mechanical evaluations under controlled passive elbow stretches in stroke survivors and healthy controls were performed in a research laboratory of a rehabilitation hospital. Twelve stroke survivors and nine healthy controls participated in the study. Spasticity and catch angle were evaluated at 90°/s and 270°/s with the velocities controlled through real-time audiovisual feedback. The elbow range of motion (ROM), stiffness, and energy loss were determined at a slow velocity of 30°/s. Four-dimensional measures including joint position, torque, velocity and torque change rate were analyzed jointly to determine the catch angle.Results: The catch angle was dependent on the stretch velocity and occurred significantly later with increasing velocity (p < 0.001), indicating position dependence of spasticity. The higher resistance felt by the examiner at the higher velocity was also due to more extreme joint position (joint angle) since the spastic joint was moved significantly further to a stiffer elbow position with the higher velocity. Stroke survivors showed smaller ROM (p < 0.001), higher stiffness (p < 0.001), and larger energy loss (p = 0.005). Compared to the controls, stroke survivors showed increased reflex excitability with higher reflex-mediated torque (p < 0.001) and at higher velocities (p = 0.02).Conclusion: Velocity dependence of spasticity is partially due to joint angle position dependence with the joint moved further (to a stiffer position where higher resistance was felt) at a higher velocity. The “4-dimensional characterization” including the joint angle, velocity, torque, and torque change rate provides a systematic tool to characterize catch angle and spasticity quantitatively

    Effects of Sangu Decoction on Osteoclast Activity in a Rat Model of Breast Cancer Bone Metastasis

    Get PDF
    Bone metastasis (BM) is a major clinical problem for which current treatments lack full efficacy. The Traditional Chinese Medicine (TCM) Sangu Decoction (SGD) has been widely used to treat BM in China. However, no in vivo experiments to date have investigated the effects of TCM on osteoclast activity in BM. In this study, the protective effect and probable mechanism of SGD were evaluated. The model was established using the breast cancer MRMT-1 cells injected into the tibia of rat. SGD was administrated, compared with Zoledronic acid as a positive control. The development of the bone tumor and osteoclast activity was monitored by radiological analysis. TRAP stain was used to identify osteoclasts quantity and activity. TRAP-5b in serum or bone tumor and TRAP mRNA were also quantified. Radiological examination showed that SGD inhibited tumor proliferation and preserved the cortical and trabecular bone structure. In addition, a dramatic reduction of TRAP positive osteoclasts was observed and TRAP-5b levels in serum and bone tumor decreased significantly. It also reduced the mRNA expression of TRAP. The results indicated that SGD exerted potent antiosteoclast property that could be directly related to its TRAP inhibited activity. In addition it prevented bone tumor proliferation in BM model

    Testing and Data Reduction of the Chinese Small Telescope Array (CSTAR) for Dome A, Antarctica

    Full text link
    The Chinese Small Telescope ARray (hereinafter CSTAR) is the first Chinese astronomical instrument on the Antarctic ice cap. The low temperature and low pressure testing of the data acquisition system was carried out in a laboratory refrigerator and on the 4500m Pamirs high plateau, respectively. The results from the final four nights of test observations demonstrated that CSTAR was ready for operation at Dome A, Antarctica. In this paper we present a description of CSTAR and the performance derived from the test observations.Comment: Accepted Research in Astronomy and Astrophysics (RAA) 1 Latex file and 20 figure
    • …
    corecore