12 research outputs found
A Systemic Functional Study of the Head Identification of the English Nominal Group
Head identification is the first and crucial step in describing and analyzing the English nominal group. The literature to date indicates that the way of identifying the Head of the English nominal group varies from one school of linguistics to another and even from one grammarian to another. This paper focuses on the English nominal group containing the word of and the research is conducted from the systemic functional linguistics perspective
μ€κ΅μΈ νκ΅μ΄ νμ΅μλ₯Ό μν μΈλμ΄ κ΅μ‘ μ°κ΅¬-μ‘°μ΄λ² νμ©μ μ€μ¬μΌλ‘-
νμλ
Όλ¬Έ (μμ¬)-- μμΈλνκ΅ λνμ : κ΅μ΄κ΅μ‘κ³Ό, 2017. 2. ꡬ본κ΄.μΈκ΅μ΄λ‘ μμ¬μν΅μ νκΈ° μν΄μ λ°μμ΄λ λ¬Έλ²μ λν νμ΅λΏλ§ μλλΌ μ΄νμ λν νμ΅μ΄ μ€μνλ€. μ΄νλ μ΄μ’
μ λ°λΌ νμμ΄, κ³ μ μ΄, μΈλμ΄μ μΈ κ°μ§ μ’
λ₯λ‘ κ΅¬λΆλλ€. νκ΅ μ¬νμ κΈκ²©ν κ΅μ νλ μΈμ΄ μ¬μ©μλ ν° μν₯μ λ―ΈμΉκ³ μλλ° νΉν μΈλμ΄κ° μΌμμμ μ°¨μ§νλ λΉμ¨μ λμμ§κ³ μμΌλ©°, μ΄μ λ°λΌ νκ΅μ΄ νμ΅μκ° μΈλμ΄λ₯Ό μ ν κΈ°νλ λ§μμ§κ³ μλ€. μ΄ μ°κ΅¬λ μ€κ΅μΈ νκ΅μ΄ νμ΅μλ€μ μΈλμ΄μ λν μ΄ν΄ λ₯λ ₯ λ° μ¬μ© λ₯λ ₯μ ν₯μνκ³ μ μΈλμ΄ κ΅μ‘μ νμμ±μ νΌλ ₯νκ³ , μ‘°μ΄λ² νμ©μ μ€μ¬μΌλ‘ νλ μΈλμ΄ κ΅μ‘μ λ΄μ©κ³Ό λ°©μμ λͺ¨μνλ λ°μ κ·Έ λͺ©μ μ΄ μλ€.
νκ΅μ΄μμλ μΈλμ΄ μμ μμ μ κ·Έλλ‘ νκΈ°νμ¬ μμμ κ°κΉμ΄ λͺ¨μ΅μ μ μ§νκ³ μλ€. λ°λ©΄μ, μ€κ΅μ΄μμλ κ°μΈκ° λ€μ΄μλ μ£Όμ μμ λ§ νκΈ°ν¨μΌλ‘μ¨ μμ μ λν μΆμνλ νΉμ§μ 보μ΄κ³ μλ€. μ΄λ¬ν μ°¨μ΄μ μΌλ‘ μΈνμ¬ μ€κ΅μΈ νμ΅μκ° νκ΅μ΄ μΈλμ΄λ₯Ό μ΄ν΄νλ λ° μ΄λ €μμ΄ μλ€. κ·Έλ¦¬κ³ ννμ μΈ μΈ‘λ©΄μμ νκ΅μ΄ μΈλμ΄λ νμ, ν©μ±, νμ¬μ μ€λ³΅, μλ΅, μ μ‘°μ΄ λ± λ€μν ꡬ쑰 μ νμ΄ μκΈ° λλ¬Έμ νμ΅μκ° μ΄ν΄νκΈ°μ μ΄λ €μμ΄ λ°λ₯Έλ€. νΉν, λ¨μΌ μΈλμ΄λ³΄λ€ μΈλμ΄μ λ€λ₯Έ μ΄μ’
μ λ¨μ΄λ μ μ¬λ₯Ό κ²°ν©νμ¬ κ΅¬μ±λ ν©μ±μ΄, νμμ΄μ κ΅¬μ‘°κ° λ 볡μ‘νκΈ° λλ¬Έμ νκ΅μ΄ μ‘°μ΄λ²μ λν μΈμμ΄ λΆμ‘±νλ©΄ μΈλμ΄ μλ―Έλ₯Ό μ΄ν΄νκΈ° μ΄λ €μΈ κ²μ΄λ€. μ΄μ κ°μ λ¬Έμ μμμμ μΆλ°νμ¬ μ΄ μ°κ΅¬μμλ μ€κ΅μΈ νμ΅μμ μΈλμ΄ μ΄ν΄ λ₯λ ₯μ ν₯μνκΈ° μν΄ ν¨κ³Όμ μΈ μΈλμ΄ κ΅μ‘ λ΄μ©κ³Ό λ°©μμ ꡬμνκ³ μ νμλ€.
β
‘μ₯μμλ μ ν μ°κ΅¬λ₯Ό ν λλ‘ λ¨Όμ νκ΅μ΄ μΈλμ΄μ κ°λ
κ³Ό μ νμ λν΄ μ΄ν΄λ³΄μλ€. κΈ°μ‘΄ μ°κ΅¬μ μ μμ λΆλ₯ κΈ°μ€μ μ 리νμ¬ νκ΅μ΄ μΈλμ΄μ μ μλ₯Ό λ΄λ¦¬κ³ μ‘°μ΄λ²μ λ°λΌ μΈλμ΄λ₯Ό μ νλ³λ‘ λΆλ₯νμλ€. κ·Έλ¦¬κ³ ννμ μΈ‘λ©΄μμ νκ΅μ΄ μΈλμ΄μ μ€κ΅μ΄ μΈλμ΄λ₯Ό λμ‘° λΆμνμλ€. λν μ€κ΅μμ μ΄λ£¨μ΄μ§κ³ μλ νκ΅μ΄ μΈλμ΄μ κ΅μ‘ νν©μ λΆμνμλ€. κ΅μ‘ νν© λΆμμ μν΄ μ€κ΅μμ μΆνλ νκ΅μ΄ κ΅μ¬λ₯Ό μ΄ν΄λ³΄κ³ νμ΅μ μ€λ¬Έμ μ€μνμλ€. ꡬ체μ μΌλ‘λ μ€κ΅ λ΄ λνμμ μ¬μ©νκ³ μλ κ΅μ¬λ₯Ό λΆμνμ¬ κ΅μ¬μμ νκ΅μ΄ μΈλμ΄λ₯Ό μ΄λ»κ² μ μνκ³ μλμ§λ₯Ό κΈ°μ νμλ€. λν μ€κ΅ λνμ μ¬ν μ€μΈ μ€κ΅μΈ νμ΅μμκ² κ΅μ νμ΅ μ€ν μ‘°μ¬λ₯Ό μ€μν¨μΌλ‘μ¨ νκ΅μ΄ μΈλμ΄ νμ΅μ λν νλ λ° νμ΅μμ μ΄λ €μ λ±μ μ‘°μ¬νμλ€. μ€λ¬Έ μ‘°μ¬λ₯Ό ν λλ‘ μ€κ΅μΈ νμ΅μμ νκ΅μ΄ μΈλμ΄μ λν μ΄ν΄ λ° μΈμ, νμ΅ κ²½λ‘, μμ
μμμ νμ΅ λ°©μ λ±μ λνμ¬ λΆμνκ³ κ·Έ λ΄μ©μ μ μνμλ€. μ΄μ΄μ νκ΅μ΄ μΈλμ΄ μ¬μ λ° μ΄ν μλ£λ₯Ό λ°νμΌλ‘ νκ΅μ΄ κ΅μ‘μ© μΈλμ΄ λͺ©λ‘μ μ μ νκ³ λμ΄λλ₯Ό μ μνμλ€.
β
’μ₯μμλ μ€λ¬Έ μ‘°μ¬μ μΈν°λ·°λ₯Ό ν΅νμ¬ μ€κ΅μΈ μ€κΈ νμ΅μμ νκ΅μ΄ μΈλμ΄ μ΄ν΄ μμμ μ μνμλ€. μ΄λ₯Ό μνμ¬ λ¨Όμ β
‘μ₯μμ λ
Όμν μ΄λ‘ μ λ°νμΌλ‘ μ€λ¬Έμ§λ₯Ό μμ±νμ¬ νμ΅μμ μΈλμ΄ μ΄ν μμ λ₯λ ₯, μ§μ λ₯λ ₯, κ·Έλ¦¬κ³ μ 체 μ΄ν΄ λ₯λ ₯μ μ΄ν΄λ³Έ ν, μ€λ₯μ μμΈμ ꡬ체μ μΌλ‘ νμ
νκΈ° μν΄ μ¬ν μΈν°λ·°λ₯Ό μννμλ€. κ·Έλ¦¬κ³ μμ§λ μλ£μ κ²°κ³Όλ₯Ό λΆμνκΈ° μν΄ ν΅κ³ νλ‘κ·Έλ¨μ μ¬μ©νμλ€.
β
£μ₯μμλ β
’μ₯μμ μ΄ν΄λ³Έ κ²°κ³Όλ₯Ό λ°μνμ¬ νκ΅μ΄ μΈλμ΄ κ΅μ‘μ λͺ©μ λ° λͺ©νλ₯Ό μ μνμκ³ ν¨κ³Όμ μΈ μΈλμ΄ κ΅μΒ·νμ΅ λ΄μ©μ ꡬμΆνμλ€. μ΄λ₯Ό μν΄, μ‘°μ΄λ²(μ΄κ·Ό, μ μ¬ λ± λ¨μ) λ° μΈλμ΄ μ‘°μ΄ μ νμ λν μ΄ν΄ κ΅μ‘, μ‘°μ΄λ² μ§μμ νμ©ν μΈλμ΄μ νν νΉμ§μ λΆμ κ΅μ‘, μΌλΆ μΈλμ΄ νκΈ°λ²μ λν κ°μ‘° κ΅μ‘, μΈλμ΄ μλ―Έμ μμ΄ μμ΄ λ° μ€κ΅μ΄ μΈλμ΄ μλ―Έμ λΉκ΅ μ€λͺ
κ΅μ‘, κ·Έλ¦¬κ³ μλ―Έλ§ κ΅¬μΆ λ° μ΄κ·Όμ΄λ μ μ¬ νμ©μ ν΅ν μλ‘μ΄ λ¨μ΄μ μμ± κ΅μ‘ λ΄μ©μ ꡬμνμλ€. λν μ€μ κ΅μ‘ νμ₯μμ μ μ©ν μ μλλ‘ νꡬ νλμ μ€μνλ 'OHE(κ΄μ°°-κ°μ€-μ€ν)' λͺ¨νμ μ¬μ©νμ¬ μ‘°μ΄λ² νμ©μ μ€μ¬μΌλ‘ νλ μΈλμ΄ κ΅μΒ·νμ΅ λͺ¨νκ³Ό κ΅μ€ νλμ λ§λ ¨νκ³ κ·Έ κ΅μ‘μ ν¨κ³Όλ₯Ό κ²μ¦νμλ€.
λ³Έ μ°κ΅¬λ μ€κ΅μΈ νμ΅μμ μΈλμ΄ μ‘°μ΄ μ νμ λΆμνμλ€λ μ κ³Ό μ‘°μ΄λ²μ νμ©νμ¬ μΈλμ΄λ₯Ό μμ±νκ±°λ μλ―Έλ₯Ό μ μΆνμλ€λ μ μμ μμκ° μλ€. μμΈλ¬ μ€κ΅μΈ νμ΅μλ€μ΄ μΈλμ΄λ₯Ό μ‘°μ΄ μ νμ λ°λΌ λΆλ₯νκ³ μ½κ² κΈ°μ΅ν λΏ μλλΌ μ₯κΈ°μ μΌλ‘ κΈ°μ΅ν μ μκΈ° μνμ¬ ν¨κ³Όμ μΈ μΈλμ΄ κ΅μΒ·νμ΅ λ°©λ²μ λͺ¨μνλ€λ μ μμλ μμκ° μλ€.β
. μλ‘ 1
1. μ°κ΅¬μ νμμ± λ° λͺ©μ 1
2. μ ν μ°κ΅¬ 4
2.1. μΈλμ΄μ λν κ΅μ΄νμ μ°κ΅¬ 4
2.2. μΈλμ΄μ λν νκ΅μ΄ κ΅μ‘νμ μ°κ΅¬ 6
3. μ°κ΅¬ λμ λ° μ°κ΅¬ λ°©λ² 7
β
‘. μΈλμ΄ κ΅μ‘ μ°κ΅¬λ₯Ό μν μ μ 11
1. μΈλμ΄μ κ°λ
κ³Ό μ ν 11
1.1. μΈλμ΄μ κ°λ
12
1.2. μ‘°μ΄λ²μ λ°λ₯Έ μΈλμ΄μ μ ν 20
2. νκ΅μ΄μ μ€κ΅μ΄ μΈλμ΄μ ννμ λμ‘° λΆμ 50
2.1. μμ΄ ννμ νκ΅μ΄μ μ€κ΅μ΄ μΈλμ΄ 52
2.2. μ½μ΄ ννμ νκ΅μ΄μ μ€κ΅μ΄ μΈλμ΄ 57
2.3. ν©μ± ννμ νκ΅μ΄μ μ€κ΅μ΄ μΈλμ΄ 59
2.4. νμ ννμ νκ΅μ΄μ μ€κ΅μ΄ μΈλμ΄ 62
3. μ€κ΅ λ΄ νκ΅μ΄ μΈλμ΄ κ΅μ‘ νν© 66
3.1. μ€κ΅μμ μΆνλ νκ΅μ΄ κ΅μ¬ λΆμ 66
3.2. μΈλμ΄ μμ
μ λν νμ΅μμ μΈμ 76
4. νκ΅μ΄ κ΅μ‘μ© μΈλμ΄ λͺ©λ‘μ μ μ 79
4.1. νκ΅μ΄ κ΅μ‘μ© μΈλμ΄ λͺ©λ‘ μ μ μ νν© 79
4.2. νκ΅μ΄ κ΅μ‘μ© μΈλμ΄ λͺ©λ‘ μ μ λ° λμ΄λ μ€μ 80
β
’. νμ΅μμ μΈλμ΄ μ΄ν΄ μμ λ° μ€λ₯ λΆμ 88
1. μ‘°μ¬ λ°©λ² λ° μ μ°¨ 88
1.1. μ‘°μ¬ μ°Έμ¬μ μ 보 88
1.2. μ‘°μ¬ λ°©λ² λ° μλ£ κ΅¬μ± 90
2. μ‘°μ¬ κ²°κ³Ό λ° λΆμ 94
2.1. μΈλμ΄ μ‘°μ΄λ²μ λν μ‘°μ¬ κ²°κ³Ό λΆμ 94
2.2. μΈλμ΄ μ΄ν μμ λ₯λ ₯μ μ‘°μ¬ κ²°κ³Ό λΆμ 97
2.3. μΈλμ΄ μ΄ν λ₯λ ₯(μμ &μ§μ λ₯λ ₯)μ μ‘°μ¬ κ²°κ³Ό λΆμ 101
3. νμ΅μμ μ€λ₯ μμΈ λΆμ 113
3.1. λͺ¨κ΅μ΄μ λͺ©νμ΄μ λ¨μ΄ ꡬ쑰 μ°¨μ΄λ₯Ό μΈμνμ§ λͺ»ν μ€λ₯ 113
3.2. μΈμ΄μ μμΈκ³Ό λΉμΈμ΄μ μμΈ 118
3.3. νκΈ°λ²κ³Ό μ‘°μ΄λ²μ μ μΈμνμ§ λͺ»ν μ€λ₯ 122
3.4. κ΅μ‘κ³Όμ μ μν₯μ μν μ€λ₯ 126
3.5. κΈ°ν 128
β
£. μ‘°μ΄λ²μ νμ©ν μΈλμ΄ κ΅μ‘μ μ€μ 130
1. νκ΅μ΄ μΈλμ΄ κ΅μ‘μ λͺ©μ κ³Ό λͺ©ν 130
2. νκ΅μ΄ μΈλμ΄ κ΅μ‘μ λ΄μ© 132
2.1. μ‘°μ΄λ² λ° μΈλμ΄ μ‘°μ΄ μ νμ λν μ΄ν΄ 136
2.2. μ‘°μ΄λ² μ§μμ νμ©ν μΈλμ΄μ ννμ νΉμ§ λΆμ 137
2.3. μΌλΆ μΈλμ΄ νκΈ°λ²μ λν κ°μ‘° 138
2.4. μΈλμ΄ μλ―Έμ λν΄ μ€λͺ
141
2.5. μλ‘μ΄ λ¨μ΄μ μμ± 144
3. νκ΅μ΄ μΈλμ΄ κ΅μ‘νμ΅μ λ°©λ² 145
3.1. μΈμκ³Ό νꡬλ₯Ό ν΅ν κ΅μ‘ λ°©λ² 145
3.2. μΈλμ΄ μ΄νμ§λ μμ
λͺ¨ν μ μ 147
4. μΈλμ΄ κ΅μ‘νμ΅ ν¨κ³Ό κ²μ¦ 159
4.1. μ€ν λ΄μ© λ° μ°Έμ¬μ μ μ 160
4.2. μ€ν λꡬ 161
4.3. μ€ν κ²°κ³Ό λΆμ 164
β
€. κ²°λ‘ 174
β»μ°Έκ³ λ¬Έν 177
β»λΆλ‘ 185
β»ABSTRACT 197Maste
A T67A Mutation In The Proximal Pocket Of The High-Spin Heme Of Maug Stabilizes Formation Of A Mixed-Valent Fe\u3csup\u3eIi\u3c/sup\u3e/Fe\u3csup\u3eIii\u3c/sup\u3e State And Enhances Charge Resonance Stabilization Of The Bis-Fe\u3csup\u3eIv\u3c/sup\u3e State
The diheme enzyme MauG catalyzes a six-electron oxidation required for posttranslational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. One heme is low-spin with ligands provided by His205 and Tyr294, and the other is high-spin with a ligand provided by His35. The side chain methyl groups of Thr67 and Leu70 are positioned at a distance of 3.4 Γ
on either side of His35, maintaining a hydrophobic environment in the proximal pocket of the high-spin heme and restricting the movement of this ligand. Mutation of Thr67 to Ala in the proximal pocket of the high-spin heme prevented reduction of the low-spin heme by dithionite, yielding a mixed-valent state. The mutation also enhanced the stabilization of the charge-resonance-transition of the high-valent bis-FeIV state that is generated by addition of H2O2. The rates of electron transfer from TTQ biosynthetic intermediates to the high-valent form of T67A MauG were similar to that of wild-type MauG. These results are compared to those previously reported for mutation of residues in the distal pocket of the high-spin heme that also affected the redox properties and charge resonance transition stabilization of the high-valent state of the hemes. However, given the position of residue 67, the structure of the variant protein and the physical nature of the T67A mutation, the basis for the effects of the T67A mutation must be different from those of the mutations of the residues in the distal heme pocket
Overexpression of Wnt5a promoted the protective effect of mesenchymal stem cells on Lipopolysaccharide-induced endothelial cell injury via activating PI3K/AKT signaling pathway
Abstract Background Lung endothelial barrier injury plays an important role in the pathophysiology ofΒ acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) therapy has shown promise in ARDS treatment and restoration of the impaired barrier function. It has been reported that Wnt5a shows protective effects on endothelial cells. Therefore, the study aimed to investigate whether overexpression of Wnt5a could promote the protective effects of MSCs on Lipopolysaccharide (LPS)-induced endothelial cell injury. Methods To evaluate the protective effects of MSCs overexpressing Wnt5a, we assessed the migration, proliferation, apoptosis, and angiogenic ability of endothelial cells. We assessed the transcription of protective cellular factors using qPCR and determined the molecular mechanism using Western blot analysis. Results Overexpression of Wnt5a upregulated the transcription of protective cellular factors in MSCs. Co-culture of MSCWnt5a promoted endothelial migration, proliferation and angiogenesis, and inhibited endothelial cell apoptosis through the PI3K/AKT pathway. Conclusions Overexpression of Wnt5a promoted the therapeutic effect of MSCs on endothelial cell injury through the PI3K/AKT signaling. Our study provides a novel approach for utilizing genetically modified MSCs in the transplantation therapy for ARDS
Carboxyl Group of Glu113 Is Required for Stabilization of the Diferrous and Bis-Fe IV
The diheme enzyme MauG catalyzes a six-electron oxidation required for posttranslational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. Crystallographic studies have implicated Glu113 in the formation of the bis-Fe(IV) state of MauG, in which one heme is Fe(IV)=O and the other is Fe(IV) with His-Tyr axial ligation. An E113Q mutation had no effect on the structure of MauG, but significantly altered its redox properties. E113Q MauG could not be converted to the diferrous state by reduction with dithionite, but was only reduced to a mixed valence Fe(II)/Fe(III) state, which is never observed in wild-type (WT) MauG. Addition of H(2)O(2) to E113Q MauG generated a high valence state that formed more slowly and was less stable than the bis-Fe(IV) state of WT MauG. E113Q MauG exhibited no detectable TTQ biosynthesis activity in a steady-state assay with preMADH as the substrate. It did catalyze the steady-state oxidation of quinol MADH to the quinone, but 1000-fold less efficiently than WT MauG. Addition of H(2)O(2) to a crystal of the E113Q MauG-preMADH complex resulted in partial synthesis of TTQ. Extended exposure of these crystals to H(2)O(2) resulted in hydroxylation of Pro107 in the distal pocket of the high-spin heme. It is concluded that the loss of the carboxylic group of Glu113 disrupts the redox cooperativity between hemes that allows rapid formation of the diferrous state, and alters the distribution of high-valence species that participate in charge-resonance stabilization of the bis-Fe(IV) redox state