117 research outputs found

    A Survey on Deep Multi-modal Learning for Body Language Recognition and Generation

    Full text link
    Body language (BL) refers to the non-verbal communication expressed through physical movements, gestures, facial expressions, and postures. It is a form of communication that conveys information, emotions, attitudes, and intentions without the use of spoken or written words. It plays a crucial role in interpersonal interactions and can complement or even override verbal communication. Deep multi-modal learning techniques have shown promise in understanding and analyzing these diverse aspects of BL. The survey emphasizes their applications to BL generation and recognition. Several common BLs are considered i.e., Sign Language (SL), Cued Speech (CS), Co-speech (CoS), and Talking Head (TH), and we have conducted an analysis and established the connections among these four BL for the first time. Their generation and recognition often involve multi-modal approaches. Benchmark datasets for BL research are well collected and organized, along with the evaluation of SOTA methods on these datasets. The survey highlights challenges such as limited labeled data, multi-modal learning, and the need for domain adaptation to generalize models to unseen speakers or languages. Future research directions are presented, including exploring self-supervised learning techniques, integrating contextual information from other modalities, and exploiting large-scale pre-trained multi-modal models. In summary, this survey paper provides a comprehensive understanding of deep multi-modal learning for various BL generations and recognitions for the first time. By analyzing advancements, challenges, and future directions, it serves as a valuable resource for researchers and practitioners in advancing this field. n addition, we maintain a continuously updated paper list for deep multi-modal learning for BL recognition and generation: https://github.com/wentaoL86/awesome-body-language

    Effects of seawater acidification and solar ultraviolet radiation on photosynthetic performances and biochemical compositions of Rhodosorus sp. SCSIO-45730

    Get PDF
    Ocean acidification (OA) caused by rising atmospheric CO2 concentration and solar ultraviolet radiation (UVR) resulting from ozone depletion may affect marine organisms, but little is known regarding how unicellular Rhodosorus sp. SCSIO-45730, an excellent species resource containing various biological-active compounds, responds to OA and UVR. Therefore, we conducted a factorial coupling experiment to unravel the combined effects of OA and UVR on the growth, photosynthetic performances, biochemical compositions and enzyme activities of Rhodosorus sp. SCSIO-45730, which were exposed to two levels of CO2 (LC, 400 μatm, current CO2 level; HC, 1000 μatm, future CO2 level) and three levels of UVR (photosynthetically active radiation (PAR), PAR plus UVA, PAR plus UVB) treatments in all combinations, respectively. Compared to LC treatment, HC stimulated the relative growth rate (RGR) due to higher optimum and effective quantum yields, photosynthetic efficiency, maximum electron transport rates and photosynthetic pigments contents regardless of UVR. However, the presence of UVA had no significant effect but UVB markedly reduced the RGR. Additionally, higher carbohydrate content and lower protein and lipid contents were observed when Rhodosorus sp. SCSIO-45730 was cultured under HC due to the ample HCO3− applications and active stimulation of metabolic enzymes of carbonic anhydrase and nitrate reductase, thus resulting in higher TC/TN. OA also triggered the production of reactive oxygen species (ROS), and the increase of ROS coincided approximately with superoxide dismutase and catalase activities, as well as phenols contents. However, UVR induced photochemical inhibition and damaged macromolecules, making algal cells need more energy for self-protection. Generally, these results revealed that OA counteracted UVR-related inhibition on Rhodosorus sp. SCSIO-45730, adding our understanding of the red algae responding to future global climate changes

    Livestock overgrazing disrupts the positive associations between soil biodiversity and nitrogen availability

    Get PDF
    8 páginas.- 4 figuras.- 1 tabla.- 64 referencias.- Additional supporting information may be found online in the Supporting Information sectionLivestock overgrazing influences both microbial communities and nutrient cycling in terrestrial ecosystems. However, the role of overgrazing in regulating the relationship between soil biodiversity and nitrogen availability remains largely unexplored.We performed long-term grazing exclusion experiments across eight sites along precipitation gradient covering three major types of grassland in northern China to compare the linkage between soil microbial diversity and N availability in overgrazed versus non-grazed conditions.We found a significantly positive association between fungal diversity and soil available N in non-grazed grasslands. However, the positive association was absent in overgrazed environments. Bacterial diversity is not related to soil available N in either non-grazed or overgrazed grasslands. Moreover, in bacterial community, we found a positive link between the relative abundance of Actinobacteria with soil available N in non-grazed, but not overgrazed, grasslands. Instead we found the links between relative abundance of Bacteroidetes and Acidobacteria with soil available N in overgrazed grasslands, but not non-grazed, grasslands.Synthesis. Our work provides evidence that the relationships between microbial diversity and ecosystem functions are context-dependent, and so microbial community diversity is likely not the major driver of soil N mineralization in overgrazed grasslands. Our study suggests that high intensity anthropogenic activities in grasslands restrains the capacity of diverse soil microbial communities to sustain ecosystem function, and more broadly the capacity of entire ecosystems to maintain important ecosystem processes such as plant production. Our study also indicates that the fundamental microbial communities associated with N availability change with differing land management strategies (e.g. livestock grazing).National Natural Science Foundation of China, Grant/Award Number: 31772652, U1603235, 31660679 and 31770500; National Key Research and Development Program of China, Grant/Award Number: 2016YFC0500602; Program for Introducing Talents to Universities, Grant/Award Number: B16011; Ministry of Education Innovation Team Development Plan, Grant/Award Number: 2013-373; Innovative Team of Grassland Resources from the Ministry of Education of China, Grant/Award Number: IRT_17R59; Horizon 2020 Framework Program, Grant/Award Number: H2020-MSCA-IF-2016Peer reviewe

    Physicochemical properties, antioxidant activities and hypoglycemic effects of soluble dietary fibers purified from Lentinula edodes

    Get PDF
    Abstract Lentinula edodes (L. edodes), which imparts various health benefits to humans, is considered a novel source of soluble dietary fiber (SDF). In this study, ultrasonic-assisted hot-water method was used to extract SDF (U-SDF) from L. edodes, and physicochemical, antioxidant and hypoglycemic properties of the U-SDF were investigated. Physicochemical properties of U-SDF showed that water solubility, water holding capacity, swelling capacity, and oil holding capacity were higher than that the SDF extracted using hot water method without ultrasonication. The DPPH, •OH, and •O2- radical clearance rates indicated that U-SDF exhibited better antioxidant activities. U-SDF also exhibited notable α-amylase and α-glucosidase inhibition activities. Treatment with U-SDF alleviated glucose and peroxidation metabolism disorders in vivo. Histological analysis indicated that U-SDF improved the oxidative tissue damage in diabetic mice. These results provided a theoretical basis for the development and utilization of SDF derived from L. edodes

    A genome-wide association study identifies FSHR rs2300441 associated with follicle-stimulating hormone levels

    Get PDF
    Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) play critical roles in female reproduction, while the underlying genetic basis is poorly understood. Genome-wide association studies (GWASs) of FSH and LH levels were conducted in 2590 Chinese females including 1882 polycystic ovary syndrome (PCOS) cases and 708 controls. GWAS for FSH level identified multiple variants at FSHR showing genome-wide significance with the top variant (rs2300441) located in the intron of FSHR. The A allele of rs2300441 led to a reduced level of FSH in the PCOS group (β = −.43, P = 6.70 × 10−14) as well as in the control group (β = −.35, P = 6.52 × 10−4). In the combined sample, this association was enhanced after adjusting for the PCOS status (before: β = −.38, P = 1.77 × 10−13; after: β = −.42, P = 3.33 × 10−16), suggesting the genetic effect is independent of the PCOS status. The rs2300441 explained sevenfold higher proportion of the FSH variance than the total variance explained by the two previously reported FSHR missense variants (rs2300441 R2 = 1.40% vs rs6166 R2 = 0.17%, rs6165 R2 = 0.03%). GWAS for LH did not identify any genome-wide significant associations. In conclusion, we identified genome-wide significant association between variants in FSHR and circulating FSH first, with the top associated variant rs2300441 might be a primary contributor at the population level

    Experimental impacts of grazing on grassland biodiversity and function are explained by aridity

    Get PDF
    Grazing by domestic herbivores is the most widespread land use on the planet, and also a major global change driver in grasslands. Yet, experimental evidence on the long-term impacts of livestock grazing on biodiversity and function is largely lacking. Here, we report results from a network of 10 experimental sites from paired grazed and ungrazed grasslands across an aridity gradient, including some of the largest remaining native grasslands on the planet. We show that aridity partly explains the responses of biodiversity and multifunctionality to long-term livestock grazing. Grazing greatly reduced biodiversity and multifunctionality in steppes with higher aridity, while had no effects in steppes with relatively lower aridity. Moreover, we found that long-term grazing further changed the capacity of above- and below-ground biodiversity to explain multifunctionality. Thus, while plant diversity was positively correlated with multifunctionality across grasslands with excluded livestock, soil biodiversity was positively correlated with multifunctionality across grazed grasslands. Together, our cross-site experiment reveals that the impacts of long-term grazing on biodiversity and function depend on aridity levels, with the more arid sites experiencing more negative impacts on biodiversity and ecosystem multifunctionality. We also highlight the fundamental importance of conserving soil biodiversity for protecting multifunctionality in widespread grazed grasslands

    Effects of livestock overgrazing on the relationships between plant and microbial diversity across the temperate steppes in northern China

    Get PDF
    11 páginas.- 3 figuras.- 3 tablas.- 57 referencias.-Livestock overgrazing has led to worldwide grassland degradation, posing a significant threat to plant and soil microbial diversity. However, little is known about whether livestock overgrazing influences plant and soil microbial diversity linkages. We examined relationships between plant and soil microbial beta diversity in eight pairs of ungrazed and overgrazed sites across temperate steppes in northern China. Our results revealed a positive correlation between plant and microbial beta diversity across ungrazed grasslands, and overgrazing did not change this relationship. However, different mechanisms underlay the correlations between plant and microbial beta diversity in ungrazed and overgrazed grasslands. In ungrazed grasslands, plant and microbial diversity associations were maintained mainly due to their similar responses to the shared environmental factors. While in overgrazed grasslands, the maintenance of plant and microbial diversity associations was primarily due to their functional associations. Furthermore, the positive links between plant species and microbial taxa increased in overgrazed grasslands, indicating that more soil microbial taxa form close associations with plant species in overgrazed grasslands. Our work provides new insights regarding the mechanisms of plant and microbial communities that associate under different ecological contexts, ultimately suggesting that the functional associations of plant and microbial communities are tighter as grazing intensifies in grasslands.The work was made possible by the National Natural Science Founda-tion of China (No. 32271642, 32061143027). M.D-B. acknowledges support from the Spanish Ministry of Science and Innovation for the I+D+i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. M.D-B. is also supported by a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014-2020 Objetivo temático“01 - Refuerzo de la investigación, el desarrollo tecnológico y la innovación”) associated with the research project P20_00879 (ANDABIOMA).Peer reviewe

    Nursing intervention for osteoporosis patients : A literature review

    Get PDF
    It is estimated that over 200 million people worldwide have osteoporosis. The prevalence of osteoporosis is continuing to escalate with the increasingly elderly patients. The aim of this study was to conduct a literature review to find out nursing intervention to prevent osteoporosis.   The study was conducted as a literature review and the data was collected using two databases: CINAHL and PubMed. Results from six articles were analyzed using inductive content analysis method, through which five main categories emerged; 1. different nursing interventions for osteoporosis patients 2. Patients’ educations 3. Appropriate nursing diagnoses 4. Patients’ self-care and 5. Physical exercise for patients  In conclusion, Nursing interventions can reduce the incidence of osteoporosis, accelerate the recovery of osteoporosis, and reduce the risk of osteoporosis. Also, exercise and nutrition influenced osteoporosis patients’ bone density at best in the categories analyzed within this review. However, these nursing interventions has a far wider scope of impact that needs to be explored. Further research is recommended to study the nursing interventions for the different ages of osteoporosis patients and all kinds of ways to protect the patients from fracture. Regularly exercise and supplement vitamins and calcium could be studied as an evidence-based option in supportive treatment. Patients education could be further explored as an intervention to study it is influence on patients’ condition to protect themselves.
    corecore