622 research outputs found

    Temporal and spatial analysis of Neural tube defects and detection of geographical factors in Shanxi Province, China

    Get PDF
    Background: Neural tube defects (NTDs) are congenital birth defects that occur in the central nervous system, and they have the highest incidence among all birth defects. Shanxi Province in China has the world's highest rate of NTDs. Since the 1990s, China's government has worked on many birth defect prevention programs to reduce the occurrence of NTDs, such as pregnancy planning, health education, genetic counseling, antenatal ultrasonography and serological screening. However, the rate of NTDs in Shanxi Province is still higher than the world's average morbidity rate after intervention. In addition, Shanxi Province has abundant coal reserves, and is the largest coal production province in China. The objectives of this study are to determine the temporal and spatial variation of the NTD rate in rural areas of Shanxi Province, China, and identify geographical environmental factors that were associated with NTDs in the risk area. Methods: In this study, Heshun County and Yuanping County in Shanxi Province, which have high incidence of NTDs, were selected as the study areas. Two paired sample T test was used to analyze the changes in the risk of NTDs from the time dimension. Ripley's k function and spatial filtering were combined with geographic information system (GIS) software to study the changes in the risk of NTDs from the spatial dimension. In addition, geographical detectors were used to identify the risk geographical environmental factors of NTDs in the study areas, especially the areas close to the coal sites and main roads. Results: In both Heshun County and Yuanping County, the incidence of NTDs was significantly (P<0.05) reduced after intervention. The results from spatial analysis showed that significant spatial heterogeneity existed in both counties. NTD clusters were still identified in areas close to coal sites and main roads after interventions. This study also revealed that the elevation, fault and soil types always had a larger influence on the incidence of NTDs in our study areas. In addition, distance to the river was a risk factor of NTDs in areas close to the coal sites and main roads. Conclusion: The existing interventions may have played an important role to reduce the incidence of NTDs. However, there is still spatial heterogeneity in both counties after using the traditional intervention methods. The government needs to take more measures to strengthen the environmental restoration to prevent the occurrence of NTDs, especially those areas close to coal sites and main roads. The outcome of this research provides an important theoretical basis and technical support for the government to prevent the occurrence of NTDs

    Shape-Controlled Synthesis of ZnS Nanostructures: A Simple and Rapid Method for One-Dimensional Materials by Plasma

    Get PDF
    In this paper, ZnS one-dimensional (1D) nanostructures including tetrapods, nanorods, nanobelts, and nanoslices were selectively synthesized by using RF thermal plasma in a wall-free way. The feeding rate and the cooling flow rate were the critical experimental parameters for defining the morphology of the final products. The detailed structures of synthesized ZnS nanostructures were studied through transmission electron microscope, X-ray diffraction, and high-resolution transmission electron microscope. A collision-controlled growth mechanism was proposed to explain the growth process that occurred exclusively in the gas current by a flowing way, and the whole process was completed in several seconds. In conclusion, the present synthetic route provides a facile way to synthesize ZnS and other hexagonal-structured 1D nanostructures in a rapid and scalable way

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Thymidine Phosphorylase/β-tubulin III expressions predict the response in Chinese advanced gastric cancer patients receiving first-line capecitabine plus paclitaxel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the role of Thymidine Phosphorylase and β-tubulin III in clinical outcome of Chinese advanced gastric cancer patients receiving first-line capecitabine plus paclitaxel.</p> <p>Methods</p> <p>The clinical data and tumor biopsies prior treatment from 33 advanced gastric cancer patients receiving capecitabine plus paclitaxel (cohort 1, experimental group) and 18 patients receiving capecitabine plus cisplatin (cohort 2, control group) in Beijing Cancer Hospital from July 2003 to December 2008 were retrospectively collected and analyzed for Thymidine Phosphorylase and β-tubulin III expressions by immunohistochemistry. The relationships between expressions of biomarkers and response or survival were determined by statistical analysis.</p> <p>Results</p> <p>The median age of 51 patients was 57 years (range, 27-75) with male 34 and female 17, and the response rate, median progression-free survival and overall survival were 43.1%, 120d and 265d. Among cohort 1, the response rate, median progression-free survival and overall survival in β-tubulin III positive (n = 22) and negative patients (n = 11) were 36.4%/72.7% (positive vs negative, <it>P </it>= 0.049), 86d/237d (<it>P </it>= 0.046) and 201d/388d (<it>P </it>= 0.029), respectively; the response rate (87.5% vs 14.3%, <it>P </it>= 0.01) and median progression-free survival (251d vs 84d, <it>P </it>= 0.003) in Thymidine Phosphorylase positive & β-tubulin III negative patients (n = 8) were also significantly higher than those in Thymidine Phosphorylase negative & β-tubulin III positive patients (n = 7). There was no correlation between β-tubulin III expression and response or survival among cohort 2 (n = 18).</p> <p>Conclusions</p> <p>In Chinese advanced gastric cancer, Thymidine Phosphorylase positive & β-tubulin III negative might predict response and prognosis to capecitabine plus paclitaxel chemotherapy. Further prospective evaluation in large samples should be performed to confirm these preliminary findings.</p

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Laboratory-Evolved Mutants of an Exogenous Global Regulator, IrrE from Deinococcus radiodurans, Enhance Stress Tolerances of Escherichia coli

    Get PDF
    The tolerance of cells toward different stresses is very important for industrial strains of microbes, but difficult to improve by the manipulation of single genes. Traditional methods for enhancing cellular tolerances are inefficient and time-consuming. Recently, approaches employing global transcriptional or translational engineering methods have been increasingly explored. We found that an exogenous global regulator, irrE from an extremely radiation-resistant bacterium, Deinococcus radiodurans, has the potential to act as a global regulator in Escherichia coli, and that laboratory-evolution might be applied to alter this regulator to elicit different phenotypes for E. coli.To extend the methodology for strain improvement and to obtain higher tolerances toward different stresses, we here describe an approach of engineering irrE gene in E. coli. An irrE library was constructed by randomly mutating the gene, and this library was then selected for tolerance to ethanol, butanol and acetate stresses. Several mutants showing significant tolerances were obtained and characterized. The tolerances of E. coli cells containing these mutants were enhanced 2 to 50-fold, based on cell growth tests using different concentrations of alcohols or acetate, and enhanced 10 to 100-fold based on ethanol or butanol shock experiments. Intracellular reactive oxygen species (ROS) assays showed that intracellular ROS levels were sharply reduced for cells containing the irrE mutants. Sequence analysis of the mutants revealed that the mutations distribute cross all three domains of the protein.To our knowledge, this is the first time that an exogenous global regulator has been artificially evolved to suit its new host. The successes suggest the possibility of improving tolerances of industrial strains by introducing and engineering exogenous global regulators, such as those from extremophiles. This new approach can be applied alone or in combination with other global methods, such as global transcriptional machinery engineering (gTME) for strain improvements

    Branching fraction measurements of χc0 and χc2 to π0π0 and ηη

    Get PDF
    Using a sample of 1.06×108 ψ ′ decays collected by the BESIII detector, χc0 and χc2 decays into π0π0 and ηη are studied. The branching fraction results are Br(χc0→π 0π0)=(3.23±0.03±0.23±0.14)×10 -3, Br(χc2→π0π0)=(8.8±0.2±0.6±0.4)×10 -4, Br(χc0→ηη)=(3.44±0.10±0. 24±0.2)×10 -3, and Br(χc2→ηη)=(6. 5±0.4±0.5±0.3)×10 -4, where the uncertainties are statistical, systematic due to this measurement, and systematic due to the branching fractions of ψ ′→ γχcJ. The results provide information on the decay mechanism of χc states into pseudoscalars. © 2010 The American Physical Society.published_or_final_versio

    Postnatal Survival of Mice with Maternal Duplication of Distal Chromosome 7 Induced by a Igf2/H19 Imprinting Control Region Lacking Insulator Function

    Get PDF
    The misexpressed imprinted genes causing developmental failure of mouse parthenogenones are poorly defined. To obtain further insight, we investigated misexpressions that could cause the pronounced growth deficiency and death of fetuses with maternal duplication of distal chromosome (Chr) 7 (MatDup.dist7). Their small size could involve inactivity of Igf2, encoding a growth factor, with some contribution by over-expression of Cdkn1c, encoding a negative growth regulator. Mice lacking Igf2 expression are usually viable, and MatDup.dist7 death has been attributed to the misexpression of Cdkn1c or other imprinted genes. To examine the role of misexpressions determined by two maternal copies of the Igf2/H19 imprinting control region (ICR)—a chromatin insulator, we introduced a mutant ICR (ICRΔ) into MatDup.dist7 fetuses. This activated Igf2, with correction of H19 expression and other imprinted transcripts expected. Substantial growth enhancement and full postnatal viability was obtained, demonstrating that the aberrant MatDup.dist7 phenotype is highly dependent on the presence of two unmethylated maternal Igf2/H19 ICRs. Activation of Igf2 is likely the predominant correction that rescued growth and viability. Further experiments involved the introduction of a null allele of Cdkn1c to alleviate its over-expression. Results were not consistent with the possibility that this misexpression alone, or in combination with Igf2 inactivity, mediates MatDup.dist7 death. Rather, a network of misexpressions derived from dist7 is probably involved. Our results are consistent with the idea that reduced expression of IGF2 plays a role in the aetiology of the human imprinting-related growth-deficit disorder, Silver-Russell syndrome

    Experimental studies of e + e -→ some charmless processes containing K S0 at √s = 3.773 and 3.65 GeV

    Get PDF
    We measure the observed cross sections for the charmless processes e + e -→K S0 K - K - K + π ++ c.c., K S0 K - π + η+c.c., K S0 K - π + π + π - η+c.c., K S0 K - K - K + π + η+c.c., K S0 K - K - K + π + π 0+c.c., K S0 K - ρ ++c.c. and K S0 K - π + ρ 0+c.c. We also extract upper limits on the branching fractions for ψ(3770) decays into these final states at 90% C.L. Analyzed data samples correspond to 17.3 pb-1 and 6.5 pb-1 integrated luminosities registered, respectively, at √s = 3.773 and 3.65 GeV, with the BES-II detector at the BEPC collider. © 2009 Springer-Verlag / Società Italiana di Fisica.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Soil Respiration in Tibetan Alpine Grasslands: Belowground Biomass and Soil Moisture, but Not Soil Temperature, Best Explain the Large-Scale Patterns

    Get PDF
    The Tibetan Plateau is an essential area to study the potential feedback effects of soils to climate change due to the rapid rise in its air temperature in the past several decades and the large amounts of soil organic carbon (SOC) stocks, particularly in the permafrost. Yet it is one of the most under-investigated regions in soil respiration (Rs) studies. Here, Rs rates were measured at 42 sites in alpine grasslands (including alpine steppes and meadows) along a transect across the Tibetan Plateau during the peak growing season of 2006 and 2007 in order to test whether: (1) belowground biomass (BGB) is most closely related to spatial variation in Rs due to high root biomass density, and (2) soil temperature significantly influences spatial pattern of Rs owing to metabolic limitation from the low temperature in cold, high-altitude ecosystems. The average daily mean Rs of the alpine grasslands at peak growing season was 3.92 µmol CO2 m−2 s−1, ranging from 0.39 to 12.88 µmol CO2 m−2 s−1, with average daily mean Rs of 2.01 and 5.49 µmol CO2 m−2 s−1 for steppes and meadows, respectively. By regression tree analysis, BGB, aboveground biomass (AGB), SOC, soil moisture (SM), and vegetation type were selected out of 15 variables examined, as the factors influencing large-scale variation in Rs. With a structural equation modelling approach, we found only BGB and SM had direct effects on Rs, while other factors indirectly affecting Rs through BGB or SM. Most (80%) of the variation in Rs could be attributed to the difference in BGB among sites. BGB and SM together accounted for the majority (82%) of spatial patterns of Rs. Our results only support the first hypothesis, suggesting that models incorporating BGB and SM can improve Rs estimation at regional scale
    corecore