638 research outputs found

    Interpreting Helioseismic Structure Inversion Results of Solar Active Regions

    Full text link
    Helioseismic techniques such as ring-diagram analysis have often been used to determine the subsurface structural differences between solar active and quiet regions. Results obtained by inverting the frequency differences between the regions are usually interpreted as the sound-speed differences between them. These in turn are used as a measure of temperature and magnetic-field strength differences between the two regions. In this paper we first show that the "sound-speed" difference obtained from inversions is actually a combination of sound-speed difference and a magnetic component. Hence, the inversion result is not directly related to the thermal structure. Next, using solar models that include magnetic fields, we develop a formulation to use the inversion results to infer the differences in the magnetic and thermal structures between active and quiet regions. We then apply our technique to existing structure inversion results for different pairs of active and quiet regions. We find that the effect of magnetic fields is strongest in a shallow region above 0.985R_sun and that the strengths of magnetic-field effects at the surface and in the deeper (r < 0.98R_sun) layers are inversely related, i.e., the stronger the surface magnetic field the smaller the magnetic effects in the deeper layers, and vice versa. We also find that the magnetic effects in the deeper layers are the strongest in the quiet regions, consistent with the fact that these are basically regions with weakest magnetic fields at the surface. Because the quiet regions were selected to precede or follow their companion active regions, the results could have implications about the evolution of magnetic fields under active regions.Comment: Accepted for publication in Solar Physic

    Kondo effect in systems with dynamical symmetries

    Full text link
    This paper is devoted to a systematic exposure of the Kondo physics in quantum dots for which the low energy spin excitations consist of a few different spin multiplets SiMi>|S_{i}M_{i}>. Under certain conditions (to be explained below) some of the lowest energy levels ESiE_{S_{i}} are nearly degenerate. The dot in its ground state cannot then be regarded as a simple quantum top in the sense that beside its spin operator other dot (vector) operators Rn{\bf R}_{n} are needed (in order to fully determine its quantum states), which have non-zero matrix elements between states of different spin multiplets 0 \ne 0. These "Runge-Lenz" operators do not appear in the isolated dot-Hamiltonian (so in some sense they are "hidden"). Yet, they are exposed when tunneling between dot and leads is switched on. The effective spin Hamiltonian which couples the metallic electron spin s{\bf s} with the operators of the dot then contains new exchange terms, JnsRnJ_{n} {\bf s} \cdot {\bf R}_{n} beside the ubiquitous ones JisSiJ_{i} {\bf s}\cdot {\bf S}_{i}. The operators Si{\bf S}_{i} and Rn{\bf R}_{n} generate a dynamical group (usually SO(n)). Remarkably, the value of nn can be controlled by gate voltages, indicating that abstract concepts such as dynamical symmetry groups are experimentally realizable. Moreover, when an external magnetic field is applied then, under favorable circumstances, the exchange interaction involves solely the Runge-Lenz operators Rn{\bf R}_{n} and the corresponding dynamical symmetry group is SU(n). For example, the celebrated group SU(3) is realized in triple quantum dot with four electrons.Comment: 24 two-column page

    A Lorentz Invariance Violating Cosmology on the DGP Brane

    Full text link
    We study cosmological implications of a Lorentz invariance violating DGP-inspired braneworld scenario. A minimally coupled scalar field and a single, fixed-norm, Lorentz-violating timelike vector field within an interactive picture provide a wide parameter space which accounts for late-time acceleration and transition to phantom phase of the scalar field.Comment: 23 pages, 8 figures, accepted for publication in JCA

    Risk-Stratified Screening for Colorectal Cancer Using Genetic and Environmental Risk Factors:A Cost-Effectiveness Analysis Based on Real-World Data

    Get PDF
    Background &amp; Aims: Previous studies on the cost-effectiveness of personalized colorectal cancer (CRC) screening were based on hypothetical performance of CRC risk prediction and did not consider the association with competing causes of death. In this study, we estimated the cost-effectiveness of risk-stratified screening using real-world data for CRC risk and competing causes of death. Methods: Risk predictions for CRC and competing causes of death from a large community-based cohort were used to stratify individuals into risk groups. A microsimulation model was used to optimize colonoscopy screening for each risk group by varying the start age (40–60 years), end age (70–85 years), and screening interval (5–15 years). The outcomes included personalized screening ages and intervals and cost-effectiveness compared with uniform colonoscopy screening (ages 45–75, every 10 years). Key assumptions were varied in sensitivity analyses. Results: Risk-stratified screening resulted in substantially different screening recommendations, ranging from a one-time colonoscopy at age 60 for low-risk individuals to a colonoscopy every 5 years from ages 40 to 85 for high-risk individuals. Nevertheless, on a population level, risk-stratified screening would increase net quality-adjusted life years gained (QALYG) by only 0.7% at equal costs to uniform screening or reduce average costs by 1.2% for equal QALYG. The benefit of risk-stratified screening improved when it was assumed to increase participation or costs less per genetic test. Conclusions: Personalized screening for CRC, accounting for competing causes of death risk, could result in highly tailored individual screening programs. However, average improvements across the population in QALYG and cost-effectiveness compared with uniform screening are small.</p

    Inflationary Cosmology with Five Dimensional SO(10)

    Full text link
    We discuss inflationary cosmology in a five dimensional SO(10) model compactified on S1/(Z2×Z2)S^1/(Z_2\times Z_2'), which yields SU(3)c×SU(2)L×U(1)Y×U(1)XSU(3)_c\times SU(2)_L\times U(1)_Y\times U(1)_X below the compactification scale. The gauge symmetry SU(5)×U(1)XSU(5)\times U(1)_X is preserved on one of the fixed points, while ``flipped'' SU(5)×U(1)XSU(5)'\times U(1)'_X is on the other fixed point. Inflation is associated with U(1)XU(1)_X breaking, and is implemented through FF-term scalar potentials on the two fixed points. A brane-localized Einstein-Hilbert term allows both branes to have positive tensions during inflation. The scale of U(1)XU(1)_X breaking is fixed from δT/T\delta T/T measurements to be around 101610^{16} GeV, and the scalar spectral index n=0.980.99n=0.98-0.99. The inflaton field decays into right-handed neutrinos whose subsequent out of equilibrium decay yield the observed baryon asymmetry via leptogenesis.Comment: 1+19 pages, improved discussion of 5D cosmology, Version to appear in PR

    Dense Star-forming Gas and Dust in the Magellanic Clouds

    Full text link
    The early stages of star formation are closely related to the ambient conditions in the interstellar medium. Important questions such as dust abundance, size distribution, temperature distribution, fraction of molecular gas, fraction of dense gas, gas surface density and total amount of gas and dust require separation of metallicity and radiation effects. The Magellanic Clouds provide an ideal laboratory to carry out such studies. They are prominent targets for space observatories (Spitzer, Herschel), but an important role remains for large groundbased facilities, such as a 25 m class sub-millimeter telescope on Dome C.Comment: 10 pages, to appear in: 3rd ARENA Conference: An Astronomical Observatory at Concordi

    Ab initio calculations for bromine adlayers on the Ag(100) and Au(100) surfaces: the c(2x2) structure

    Full text link
    Ab initio total-energy density-functional methods with supercell models have been employed to calculate the c(2x2) structure of the Br-adsorbed Ag(100) and Au(100) surfaces. The atomic geometries of the surfaces and the preferred bonding sites of the bromine have been determined. The bonding character of bromine with the substrates has also been studied by analyzing the electronic density of states and the charge transfer. The calculations show that while the four-fold hollow-site configuration is more stable than the two-fold bridge-site topology on the Ag(100) surface, bromine prefers the bridge site on the Au(100) surface. The one-fold on-top configuration is the least stable configuration on both surfaces. It is also observed that the second layer of the Ag substrate undergoes a small buckling as a consequence of the adsorption of Br. Our results provide a theoretical explanation for the experimental observations that the adsorption of bromine on the Ag(100) and Au(100) surfaces results in different bonding configurations.Comment: 10 pages, 4 figure, 5 tables, Phys. Rev. B, in pres

    Terahertz Radar Cross Section Characterization using Laser Feedback Interferometry with a Quantum Cascade Laser

    Get PDF
    Radar cross section (RCS) measurements of complex, large objects are usually performed on scale models so that the measurement is carried out in a well-controlled environment. This letter explores the feasibility of RCS measurement using a terahertz quantum cascade laser via laser feedback interferometry. Numerical simulations show that the RCS information embedded in the non-linear interferometric signals obtained from simple targets can be retrieved through numerical fitting of the well-known excess phase equation. The method is validated experimentally using a terahertz quantum cascade laser and the results are well matched with those obtained from numerical simulations

    How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs

    Full text link
    We intend to provide a comprehensive answer to the question on whether all Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we present a synthesis of the LASCO CME observations over the last sixteen years, assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic observations from STEREO and SDO, and statistics from a revised LASCO CME database. We argue that the bright loop often seen as the CME leading edge is the result of pileup at the boundary of the erupting flux rope irrespective of whether a cavity or, more generally, a 3-part CME can be identified. Based on our previous work on white light shock detection and supported by the MHD simulations, we identify a new type of morphology, the `two-front' morphology. It consists of a faint front followed by diffuse emission and the bright loop-like CME leading edge. We show that the faint front is caused by density compression at a wave (or possibly shock) front driven by the CME. We also present high-detailed multi-wavelength EUV observations that clarify the relative positioning of the prominence at the bottom of a coronal cavity with clear flux rope structure. Finally, we visually check the full LASCO CME database for flux rope structures. In the process, we classify the events into two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear structure). We find that at least 40% of the observed CMEs have clear flux rope structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a coherent magnetic, twist-carrying coronal structure with angular width of at least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a few minutes to several hours. We conclude that flux ropes are a common occurrence in CMEs and pose a challenge for future studies to identify CMEs that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue "Flux Rope Structure of CMEs

    Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO

    Full text link
    Gamma-ray bursts are believed to originate in core-collapse of massive stars. This produces an active nucleus containing a rapidly rotating Kerr black hole surrounded by a uniformly magnetized torus represented by two counter-oriented current rings. We quantify black hole spin-interactions with the torus and charged particles along open magnetic flux-tubes subtended by the event horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii) aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al. 2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating LIGO/Virgo detectors enables searches for nearby events and their spectral closure density 6e-9 around 250Hz in the stochastic background radiation in gravitational waves. At current sensitivity, LIGO-Hanford may place an upper bound around 150MSolar in GRB030329. Detection of Egw thus provides a method for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49
    corecore