13,048 research outputs found

    The effect of interaction between Lipoprotein Lipase and ApoVLDL-II genes on fat and serum biochemical levels

    Get PDF
    Body weight, abdominal fat weight and serum biochemical levels were determined from lean and fat chicken breeds at 12 weeks of age. Single nucleotide polymorphism (SNP) in apoVLDL-II and lipoprotein lipase genes was screened by PCR-SSCP and detected by direct sequencing. Lipoprotein lipase gene frequency was found to be significantly different (P < 0.01) in lean chicken whereas it was non-significantly different in fat chicken. SNP in apoVLDL-II and lipoprotein lipase genes significantly (P< 0.05) affected body weight and fat weight. Similarly their interaction significantly (P < 0.05) affected body weight and fat weight. However, no significant difference was observed in the percentage of abdominal fat. SNP in apoVLDL-II and lipoprotein lipase genes significantly (P < 0.05) affected total cholesterol and high density lipoprotein. More likely, the interaction of apoVLDL-II and lipoprotein lipase significantly affect total cholesterol, triglyceride, high density lipoprotein, very low density lipoprotein and low density lipoprotein

    The Turkey Ig-like receptor family: identification, expression and function.

    Get PDF
    The chicken leukocyte receptor complex located on microchromosome 31 encodes the chicken Ig-like receptors (CHIR), a vastly expanded gene family which can be further divided into three subgroups: activating CHIR-A, bifunctional CHIR-AB and inhibitory CHIR-B. Here, we investigated the presence of CHIR homologues in other bird species. The available genome databases of turkey, duck and zebra finch were screened with different strategies including BLAST searches employing various CHIR sequences, and keyword searches. We could not identify CHIR homologues in the distantly related zebra finch and duck, however, several partial and complete sequences of CHIR homologues were identified on chromosome 3 of the turkey genome. They were designated as turkey Ig-like receptors (TILR). Using cDNA derived from turkey blood and spleen RNA, six full length TILR could be amplified and further divided according to the typical sequence features into one activating TILR-A, one inhibitory TILR-B and four bifunctional TILR-AB. Since the TILR-AB sequences all displayed the critical residues shown to be involved in binding to IgY, we next confirmed the IgY binding using a soluble TILR-AB1-huIg fusion protein. This fusion protein reacted with IgY derived from various gallinaceous birds, but not with IgY from other bird species. Finally, we tested various mab directed against CHIR for their crossreactivity with either turkey or duck leukocytes. Whereas no staining was detectable with duck cells, the CHIR-AB1 specific mab 8D12 and the CHIR-A2 specific mab 13E2 both reacted with a leukocyte subpopulation that was further identified as thrombocytes by double immunofluorescence employing B-cell, T-cell and thrombocyte specific reagents. In summary, although the turkey harbors similar LRC genes as the chicken, their distribution seems to be distinct with predominance on thrombocytes rather than lymphocytes

    Comparison of digital signal-signal beat interference compensation techniques in direct-detection subcarrier modulation systems

    Get PDF
    Single-polarization direct-detection transceivers may offer advantages compared to digital coherent technology for some metro, back-haul, access and inter-data center applications since they offer low-cost and complexity solutions. However, a direct-detection receiver introduces nonlinearity upon photo detection, since it is a square-law device, which results in signal distortion due to signal-signal beat interference (SSBI). Consequently, it is desirable to develop effective and low-cost SSBI compensation techniques to improve the performance of such transceivers. In this paper, we compare the performance of a number of recently proposed digital signal processing-based SSBI compensation schemes, including the use of single- and two-stage linearization filters, an iterative linearization filter and a SSBI estimation and cancellation technique. Their performance is assessed experimentally using a 7 Ă— 25 Gb/s wavelength division multiplexed (WDM) single-sideband 16-QAM Nyquistsubcarrier modulation system operating at a net information spectral density of 2.3 (b/s)/Hz

    Spectrally Efficient WDM Nyquist Pulse-Shaped 16-QAM Subcarrier Modulation Transmission With Direct Detection

    Get PDF
    The ability to transmit signals with high information spectral density (ISD) using low-complexity and cost-effective transceivers is essential for short- and medium-haul optical communication systems. Consequently, spectrally efficient direct detection transceiver-based solutions are attractive for such applications. In this paper, we experimentally demonstrate the wavelength-division multiplexed (WDM) transmission of 7Ă—12 GHz-spaced dispersion pre-compensated Nyquist pulse-shaped 16-QAM subcarrier modulated channels operating at a net bit rate of 24 Gb/s per channel, and achieving a net optical ISD of 2.0 b/s/Hz. The direct detection receiver used in our experiment consisted of a single-ended photodiode and a single analog-to-digital converter. The carrier-to-signal power ratio at different values of optical signal-to-noise ratio was optimized to maximize the receiver sensitivity performance. The transmission experiments were carried out using a recirculating fiber loop with uncompensated standard single-mode fiber and EDFA-only amplification. The maximum achieved transmission distances for single channel and WDM signals were 727 and 323 km below the bit-error ratio of 3.8 Ă— 10-3, respectively. To the best of our knowledge, this is the highest achieved ISD for WDM transmission in direct detection links over such distances

    Reach Enhancement for WDM Direct-Detection Subcarrier Modulation using Low-Complexity Two-Stage Signal-Signal Beat Interference Cancellation

    Get PDF
    We describe a novel low-complexity SSBI cancellation scheme, and experimentally investigate its performance in a 7Ă—25 Gb/s WDM direct-detection single-sideband 16QAM Nyquistsubcarrier modulation system. The scheme achieves a doubling of the transmission reach

    SSBI Mitigation and the Kramers-Kronig Scheme in Single-Sideband Direct-Detection Transmission With Receiver-Based Electronic Dispersion Compensation

    Get PDF
    The performance of direct-detection transceivers employing electronic dispersion compensation combined with DSP-based receiver linearization techniques is assessed through experiments on a 4 Ă— 112 Gb/s wavelength-division multiplexing direct-detection single-sideband 16 quadratic-amplitude modulation Nyquist-subcarrier-modulation system operating at a net optical information spectral density of 2.8 b/s/Hz in transmission over standard single mode fiber links of up to 240 km. The experimental results indicate that systems with receiver-based dispersion compensation can achieve similar performance to those utilizing transmitter-based dispersion compensation, provided it is implemented together with an effective digital receiver linearization technique. The use of receiver-based compensation would simplify the operation of a fiber link since knowledge of the link dispersion is not required at the transmitter. The recently proposed Kramers-Kronig receiver scheme was found to be the best performing among the receiver linearization techniques assessed. To the best of our knowledge, this is the first experimental demonstration of the Kramers-Kronig scheme

    Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells; proof of the field screening by mobile ions and determination of the space charge layer widths

    Get PDF
    In Methyl Ammonium Lead Iodide (MAPI) perovskite solar cells, screening of the built in field by mobile ions has been proposed as part of the cause of the large hysteresis observed in the current/voltage scans in many cells. We show that photocurrent transients measured immediately (e.g. 100 ÎĽs) after a voltage step can provide direct evidence that this field screening exists. Just after a step to forward bias, the photocurrent transients are reversed in sign (i.e. inverted), and the magnitude of the inverted transients can be used to find an upper bound on the width of the space charge layers adjacent to the electrodes. This in turn provides a lower bound on the mobile charge concentration, which we find to be 1 x 10 17 /cm 3 . Using a new photocurrent transient experiment, we show that the space charge layer thickness remains approximately constant as a function of bias, as expected for mobile ions in a solid electrolyte. We also discuss additional characteristics of the inverted photocurrent transients that imply either an unusually stable deep trapping, or a photo effect on the mobile ion conductivity

    Day-ahead allocation of operation reserve in composite power systems with large-scale centralized wind farms

    Get PDF
    This paper focuses on the day-ahead allocation of operation reserve considering wind power prediction error and network transmission constraints in a composite power system. A two-level model that solves the allocation problem is presented. The upper model allocates operation reserve among subsystems from the economic point of view. In the upper model, transmission constraints of tielines are formulated to represent limited reserve support from the neighboring system due to wind power fluctuation. The lower model evaluates the system on the reserve schedule from the reliability point of view. In the lower model, the reliability evaluation of composite power system is performed by using Monte Carlo simulation in a multi-area system. Wind power prediction errors and tieline constraints are incorporated. The reserve requirements in the upper model are iteratively adjusted by the resulting reliability indices from the lower model. Thus, the reserve allocation is gradually optimized until the system achieves the balance between reliability and economy. A modified two-area reliability test system (RTS) is analyzed to demonstrate the validity of the method.This work was supported by National Natural Science Foundation of China (No. 51277141) and National High Technology Research and Development Program of China (863 Program) (No. 2011AA05A103)

    A Geometric Approach to CP Violation: Applications to the MCPMFV SUSY Model

    Get PDF
    We analyze the constraints imposed by experimental upper limits on electric dipole moments (EDMs) within the Maximally CP- and Minimally Flavour-Violating (MCPMFV) version of the MSSM. Since the MCPMFV scenario has 6 non-standard CP-violating phases, in addition to the CP-odd QCD vacuum phase \theta_QCD, cancellations may occur among the CP-violating contributions to the three measured EDMs, those of the Thallium, neutron and Mercury, leaving open the possibility of relatively large values of the other CP-violating observables. We develop a novel geometric method that uses the small-phase approximation as a starting point, takes the existing EDM constraints into account, and enables us to find maximal values of other CP-violating observables, such as the EDMs of the Deuteron and muon, the CP-violating asymmetry in b --> s \gamma decay, and the B_s mixing phase. We apply this geometric method to provide upper limits on these observables within specific benchmark supersymmetric scenarios, including extensions that allow for a non-zero \theta_QCD.Comment: 34 pages, 16 eps figures, to appear in JHE
    • …
    corecore