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Abstract: Single-polarization direct-detection transceivers may offer advantages compared to 

digital coherent technology for some metro, back-haul, access and inter-data center applications 

since they offer low-cost and complexity solutions. However, a direct-detection receiver 

introduces nonlinearity upon photodetection, since it is a square-law device, which results in 

signal distortion due to signal-signal beat interference (SSBI). Consequently, it is desirable to 

develop effective and low-cost SSBI compensation techniques to improve the performance of 

such transceivers. In this paper, we compare the performance of a number of recently proposed 

digital signal processing-based SSBI compensation schemes, including the use of single- and 

two-stage linearization filters, an iterative linearization filter and a SSBI estimation and 

cancellation technique. Their performance is assessed experimentally using a 7×25 Gb/s 

wavelength division multiplexed (WDM) single-sideband 16-QAM Nyquist-subcarrier 

modulation system operating at a net information spectral density of 2.3 (b/s)/Hz. 

© 2016 Optical Society of America 

OCIS codes: (060.0060) Fiber optics and optical communications; (060.2360) Fiber optics links and subsystems. 

References and links 

1. Alcatel-Lucent, “Bell labs metro network traffic growth: architecture impact study,” Strategic White Paper 
(2013). 

2. Cisco, “Cisco visual networking index: forecast and methodology, 2014-2019,” White Paper (2015). 

3. D. Che, Q. Hu, and W. Shieh, “Linearization of direct detection optical channels using self-coherent 
subsystems,” J. Lightw. Technol. 34(2) 516-524 (2016). 

4. R.I. Killey, M.S. Erkılınç, Z. Li, S. Pachnicke, H. Griesser, R. Bouziane, B.C. Thomsen, and P. Bayvel, 
“Spectrally-efficient direct-detection WDM transmission system,” in International Conference on Transparent 

Optical Networks (ICTON 2015), paper We.B3.2. 

5. B.J.C. Schmidt, A.J. Lowery, and L.B. Du, “Low sample rate transmitter for direct-detection optical OFDM,” 
in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 

2009), paper OWM4. 

6. A.O. Wiberg, B.-E. Olsson, and P.A. Andrekson, “Single cycle subcarrier modulation,” in Optical Fiber 
Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper 

OTuE.1. 

7. J.C. Cartledge and A.S. Karar, “100 Gb/s intensity modulation and direct detection,” J. Lightw. Technol. 32(16) 

2809-2814 (2014). 

8. M.S. Erkılınç, Z. Li, S. Pachnicke, H. Griesser, B.C. Thomsen, P. Bayvel, and R.I. Killey, “Spectrally-efficient 

WDM Nyquist-pulse-shaped 16-QAM subcarrier modulation transmission with direct detection,” J. Lightw. 
Technol. 33(15) 3147-3155 (2015). 

9. W.R. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions 

using beat interference cancellation receiver,” in European Conference and Exhibition on Optical 
Communication (ECOC 2010), paper Tu.4.A.2. 

10. S.A. Nezamalhosseini, L.R. Chen, Q. Zhuge, M. Malekiha, F. Marvasti, and D.V. Plant, “Theoretical and 

experimental investigation of direct detection optical OFDM transmission using beat interference cancellation 
receiver,” Opt. Express 21(13) 15237-15246 (2013). 

11. J. Ma, “Simple signal-to-signal beat interference cancellation receiver based on balanced detection for a single-

sideband optical OFDM signal with a reduced guard band,” Opt. Lett. 38(21), 4335-4338 (2013). 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79549938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


12. S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission 

over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in 
European Conference and Exhibition on Optical Communication (ECOC 2015), paper Mo.4.5.2. 

13. K. Zou, Y. Zhu, F. Zhang and Z. Chen, “Spectrally efficient terabit optical transmission with Nyquist 64-QAM 

half-cycle subcarrier modulation and direct-detection,” Opt. Lett. 41(12), 2767-2770 (2016). 
14. Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, "Two-stage 

linearization filter for direct-detection subcarrier modulation", IEEE Photon. Technol. Lett. 28(24), 2838-2841 

(2016). 
15. Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, "Reach 

enhancement for WDM direct-detection subcarrier modulation using low-complexity two-stage signal-signal 

beat interference cancellation", in European Conference and Exhibition on Optical Communication (ECOC 
2016), paper M 2.B.1. 

16. W. Peng, X. Wu, K. Feng, V.R. Arbab, B. Shamee, J. Yang, L.C. Christen, A.E. Willner, and S. Chi, 

“Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation 
technique,” Opt. Express 17(11) 9099-9111 (2009). 

17. J.-H. Yan, Y.-W. Chen, B.-C. Tsai, and K.-M. Feng, “A multiband DDO-OFDM System with spectral efficient 

iterative SSBI reduction DSP,” IEEE Photon. Technol. Lett. 28(2), 119-122 (2016). 

18. Z. Li, M. S. Erkılınç, S. Pachnicke, H. Griesser, R. Bouziane, B.C. Thomsen, P. Bayvel, and R.I. Killey, 

“Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 

16-QAM subcarrier modulation,” Opt. Express 23(18), 23694-23709 (2015). 
19. C. Sánchez, B. Ortega, and J. Capmany, “System performance enhancement with pre-distorted OOFDM signal 

waveforms in DM/DD systems,” Opt. Express 22(6), 7269-7283 (2014). 

20. C. Ju, X. Chen, N. Liu, and L. Wang, “SSII cancellation in 40 Gbps VSB-IMDD OFDM system based on 
symbol pre-distortion,” in European Conference and Exhibition on Optical Communication (ECOC 2014), 

paper P.7.9. 

21. Z. Li, M. S. Erkilinc, R. Bouziane, B. C. Thomsen, P. Bayvel, and R. I. Killey, "Simplifed DSP-based signal-
signal beat interference mitigation technique for direct detection OFDM", J. Lightw. Technol. 34(3), 866-872 

(2016). 
22. H.-Y. Chen, C.-C. Wei, H.-H. Chu, Y.-C. Chen, I.-C. Lu, and J. Chen, “An EAM-based 50 Gbps 60-km OFDM 

system with 29-dB loss budget enabled by SSII cancellation or volterrra filter,” in European Conference and 

Exhibition on Optical Communication (ECOC 2014), paper P.3.21. 
23. L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G.N. Liu, and X. Xu. "Beyond 100-Gb/s transmission over 80-

km SMF using direct-detection SSB-DMT at C-band." J. Lightw. Technol. 34(2), 723-729 (2016). 

24. C.Y. Wong, S. Zhang, L. Liu, T. Wang, Q. Zhang, Y. Fang, S. Deng, G. N. Liu, and X. Xu, "56 Gb/s direct 
detected single-sideband DMT transmission over 320-km SMF using silicon IQ modulator," ", in Optical Fiber 

Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2015), paper 

Th4A.3. 
25. R.I. Killey, P.M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal 

predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 

17(3), 714-716 (2005). 
26. R.A. Shafik, M.S. Rahman, and A.R. Islam, “On the extended relationships among EVM, BER and SNR as 

performance metrics,” in International Conference on Electrical and Computer Engineering (ICECE 2006), 

paper 408-411. 
27. S.L. Jansen, I. Morita, H. Ranaka, “Carrier-to-signal power ratio in fiber-optics SSB-OFDM transmission 

systems,” in Institue of Electronics, Information and Communication Engineers Conference (IEICE 2007), 

paper B-10-24. 

1. Introduction 

The total data traffic in short- and medium-haul optical links/networks, spanning distances of 

up to several hundred kilometers, is rapidly increasing, with the largest drivers for the 

continuous growth being video-on-demand and data centers/cloud applications. Recent studies 

[1, 2] have reported that the metro traffic is growing almost twice as rapidly as the traffic 

traversing the core/backbone networks, with the majority of the bandwidth being terminated 

within the metro networks. To cope with this growth, cost-effective optical transceivers 

offering low power consumption, resilience to noise and fiber impairments, and high 

information spectral density (ISD) play a key role. In contrast to polarization-multiplexed 

digital coherent systems, the simple and potentially lower cost of the optical hardware structure 

of single-polarization direct-detection (DD) wavelength division multiplexing (WDM) systems 

may make them a favorable solution for inter-data center, access, and metropolitan 

links/networks, provided they can meet the above-mentioned requirements [3, 4].  



Subcarrier modulation (SCM) signal formats, in particular orthogonal frequency division 

multiplexing (OFDM) [5] and Nyquist-pulse shaped subcarrier modulation (Nyquist-SCM) [6-

8], can be utilized to achieve high ISDs for DD systems. However, their performance is severely 

degraded because of a nonlinear effect introduced by the square-law detection, referred to as 

signal-signal beat interference (SSBI). Since the SSBI products appear over a bandwidth equal 

to that of the original subcarrier modulated signal (Bsc),  leaving a sufficient spectral guard-

band (Bgap ≥ Bsc) between the optical carrier and the subcarrier modulated signal can be a 

solution to avoid the SSBI penalty [5]. However, the achievable ISD is halved and 

approximately 50% of the electrical and optical components’ bandwidths are wasted. Therefore, 

it is essential to develop effective and low-cost SSBI compensation techniques for future high 

capacity and spectrally-efficient DD-based wavelength-division-multiplexing (WDM) short- 

and medium- haul transmission systems. 

Recently, a number of SSBI compensation techniques have been investigated for single-

polarization DD SCM systems, operating either optically [9-11] or digitally [12-24]. The 

optical schemes offer superior compensation gain, but have the drawback of increasing the 

optical transceiver complexity. On the other hand, a number of promising digital compensation 

schemes have been proposed: the single-stage linearization filter first proposed in [12] enables 

the mitigation of SSBI using a very simple digital signal processing (DSP) architecture. Its 

compensation performance can be further improved by iteratively repeating the linearization 

process or adding an extra linearization stage, techniques termed iterative linearization filter 

[13] and two-stage linearization filter [14], respectively. Alternatively, in order to maximize 

the potential compensation gain, especially at high values of optical signal-to-noise power ratio 

(OSNR), combined linearization and SSBI estimation and cancellation was proposed and 

investigated in [15] in which the SSBI is estimated from the symbol decisions and subtracted 

from the received signal waveform. The use of linearization in the latter scheme avoids the 

complexity of iterative signal demodulation and modulation stages, as proposed in [16-18].  

A key question concerns how the performance of these different compensation schemes 

compare. Published studies of the different techniques have been carried out using a variety of 

link parameters and signal formats, making such comparisons difficult. To address this, in this 

paper we present a theoretical and experimental assessment of the SSBI compensation schemes 

using a single system configuration, allowing direct comparisons of their performance. The 

paper is organized as follows: In Section 2, we analyze the working principles of these four 

SSBI compensation techniques. Section 3 describes our experimental setup to assess the 

performance of such techniques in a spectrally-efficient (net information spectral density (ISD) 

= 2.34 (b/s)/Hz) 7 × 25 Gb/s WDM DD single-sideband (SSB) 16-QAM Nyquist-SCM system. 

In section 4, we report both the experimental back-to-back and transmission results for these 

four techniques. The obtained experimental results show a good match with the theoretical 

analysis. 

2. Working principles of signal-signal beat interference mitigation schemes 

This section describes the working principles and mathematical models of the four SSBI 

compensation schemes being assessed: the single-stage linearization filter, the iterative 

linearization filter, the two-stage linearization filter and the SSBI estimation and cancellation 

technique, and discusses their potential advantages and disadvantages.  

 



Fig. 1. Schematic diagram of the direct-detection system architecture. Tx & Rx DSP: Transmitter 

and receiver DSP, DAC: Digital-to-analog converter, MOD: Modulator, SSMF: Standard single-
mode fiber, EDFA: Erbium-doped fiber amplifier, OBPF: Optical band-pass filter, PD: 

Photodiode, ADC: Analog-to-digital converter. 

The schematic diagram of the direct-detection system architecture we consider is shown in 

Fig. 1. In the transmitter DSP, the SSB subcarrier modulated signal, Es(n), is generated by 

modulation DSP (MOD DSP), where n is the discrete time index. Afterwards, digital 

transmitter-based electronic dispersion compensation (EDC) [25] and pre-emphasis are 

implemented to mitigate the accumulated dispersion of the fiber and the low-pass filtering 

effects of the transceiver electronics. Following D/A conversion, E/O conversion is carried out, 

during which the real-valued optical carrier, Ecarrier, is added to the SSB SCM signal by 

optimally biasing the IQ modulator. Following the fiber transmission, direct detection and A/D 

conversion, the detected double-sideband (DSB) signal after direct current (DC) offset removal, 

VDD(n), can be written as: 
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where Κ[∙] signifies the DC offset removal operator, and Re[x] represents the real part of x. In 

the RHS of this equation, the first term is the desired carrier-signal beating products (CSBP), 

and the second term is the unwanted SSBI penalty. Following this, the SSBI compensation 

scheme is applied to VDD(n), using one of the approaches described in the following four 

sections. 

2.1 Single-stage linearization filter 

A single-stage linearization filter has been demonstrated for DD OFDM systems [12], with the 

receiver DSP design shown in Fig. 2.  

 

Fig. 2. Receiver DSP design with single-stage linearization filter. SF: sideband filter. DEMOD 

DSP: SSB SCM signal demodulation. 

The detected DSB signal, VDD(n), is passed through the linearization filtering stage: a SSB 

signal is first generated using a sideband filter (SF), and an approximation of the signal-signal 

beating products is calculated based on the filtered SSB signal, which is then subtracted from 

the original SSB signal to partially compensate the SSBI. Note that, this technique aims to 

replicate the process of generating signal-signal beating products from the transmitted SSB 

signal. The use of the SF avoids unwanted beating products which would otherwise be 

generated by the negative frequency part of the detected DSB signal spectrum. The signal after 

the SF, VSF1(n), and the output of the single-stage linearization filter, VLin1(n), are written as 

follows [14]: 

 (2) 



     

     

     

     

2

1

2

1 1 1 1

2 22

1

2
2 2*

1 12 Re

SF s s

Lin SF SF

s s s

s s s

V n E n E n

V n V n V n

E n E n E n

E n E n E n





  

 

    
 

  

      
 

         
     

 

(3) 

where α is an amplitude scaling factor proportional to the optical carrier value, [∙] is the SF 

operator, and 1 is a second amplitude scaling factor which controls the effectiveness of the 

linearization filter. In the RHS of Eq. (3), the first term is the desired SSB CSBP; since we only 

demodulate the signal spectrum in the positive frequency domain, the second term (SSBI) can 

be partially eliminated by the third term with the optimum adjustment of 1. On the other hand, 

since the fourth (signal-SSBI beating) and fifth (SSBI-SSBI beating) terms are relatively low, 

the nonlinear penalty is reduced with respect to the case without implementing this single-stage 

linearization filter [14]. 

The advantage of this filter design is its use of a very simple DSP structure. However, as 

shown in Eq. (2), as the calculation of the signal-signal beating products is based on the received 

distorted signal, this technique itself introduces extra unwanted beating interference, thus 

limiting the compensation gain. 

2.2 Iterative linearization filter 

 

Fig. 3. Receiver DSP design with iterative linearization filter.  

To further improve the performance of the single-stage linearization filter, an iterative 

linearization filter was proposed for DD Nyquist-SCM system in [13]. Figure 3 shows the 

receiver DSP design with this technique, and its working principle is described as follows: the 

waveform of VDD(n) is stored in memory, and the signal-signal beating products are calculated 

based on the filtered SSB signal, which are then subtracting from the stored signal waveform, 

VDD(n), in the memory, to mitigate the SSBI. It can be seen that if no iterative update is carried 

out, this technique is the same as the process in the single-stage linearization filter, as described 

in section 2.1. Since the signal-signal beating products are approximated by |VSF1(n)|2, though, 

as shown in Eq. (2), inaccuracies occur due to the inclusion of the SSBI term in VSF1(n). 

However, this process can be repeated multiple times in order to reduce the inaccuracies and 

achieve the maximum compensation gain. 

This iterative linearization filtering technique improves the performance of the single-stage 

linearization filter by using the stored received signal waveform and iteratively repeating the 

SSBI estimation. Due to the multiple (four times or more) iterations performed, the DSP 

complexity is significantly increased, however. 

2.3 Two-stage linearization filter 



 

Fig. 4. Receiver DSP design with two-stage linearization filter. 

An alternative method to enhance the performance of the single-stage linearization filter is to 

use a two-stage linearization filter, which was first proposed for DD Nyquist-SCM systems in 

[14]. The receiver DSP design is shown in Fig. 4. A second linearization stage is applied to 

remove the majority of the unwanted beating interference introduced by the first stage. Its 

operating principle can be described as follows: In the first stage, which is the same as the 

single-stage linearization filter described in section 2.1, with optimum adjustment of 1, the 

SSBI penalty is removed and the remaining terms are the signal-SSBI (fourth term) and SSBI-

SSBI (fifth) beating terms, as described in Eq. 3. Following this, the signal passes through the 

second linearization stage to compensate the signal-SSBI beating interference introduced by 

the first stage, as follows: 

where VSF2(n) is the filtered SSB signal, and VLin2(n) is the output of the second linearization 

stage. The scaling factor 2 can be optimized to achieve the maximum compensation gain. 

Since the input of the second linearization stage VLin2(n) is mainly the desired CSBP, the 

estimation of the signal-SSBI beating is significantly improved and the majority of the signal-

SSBI beating interference can be compensated in this stage, thus further enhancing the 

compensation performance. It is worth noting that, since the SSBI-SSBI beating term results in 

a very small penalty in contrast to the signal-SSBI beating term, it is left uncompensated in 

order to keep the DSP simple. 

In contrast to the single-stage linearization filter, the two-stage linearization filter offers the 

advantage of enhanced compensation performance. Compared with the other digital SSBI 

compensation schemes such as the above-mentioned iterative linearization filter (section 2.2) 

or the SSBI estimation and cancellation that will be described in the following section, this 

technique avoids the requirement for multiple iterations or multiple modulation and 

demodulation DSP operations. Hence, although the DSP complexity is more than twice that of 

the single-stage filter, it is still relatively low compared to the other approaches. 

2.4 Signal-signal beat interference estimation and cancellation 

A digital iterative SSBI compensation scheme was proposed for both OFDM [16, 17] and 

Nyquist-SCM [18].  Since multiple iterations and symbol decision making can improve the 

accuracy of the SSBI approximation, it offers the highest compensation gain at high OSNR 

values. However, its digital hardware complexity is greatly increased due to the need to perform 

multiple (typically three or four) signal demodulation and modulation operations in the receiver 

DSP. Recently, we proposed and demonstrated an SSBI compensation scheme which is an 

updated version of the iterative scheme, combining single-stage linearization filter with non-

iterative SSBI estimation and cancellation [15]. Results of simulation and experimental studies 

indicated that it offers compensation performance matching the iterative scheme. 
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Fig. 5. Receiver DSP design with SSBI estimation and cancellation technique. MOD & DEMOD 

DSP: SSB SCM signal generation and demodulation. 

Figure 5 shows the receiver DSP design with the SSBI estimation and cancellation 

technique. A detailed description of the technique is given in [15]. Two copies of the detected 

DSB signal waveform VDD(n) are made with one being stored in memory and the other being 

passed through the single-stage linearization filter to partially eliminate the SSBI terms. 

Following this, non-iterative SSBI estimation and cancellation is performed as follows: A 

digital representation of the SSB SCM signal, denoted as E’
s(n), is generated by modulation 

DSP (MOD DSP) and an approximation of the signal-signal beating products Vconstruct(n) is re-

constructed, and then subtracted from the stored signal waveform VDD(n) which can be written 

as follows:  

    
2

'

construct sV n E n  (6) 

   

Since the symbol decisions are significantly more accurate due to the preceding single-stage 

linearization filtering stage, multiple iterations of the signal demodulation and modulation are 

not required. Assuming E’s(n) ≈ Es(n), the compensated signal Vcompensate(n) can be written as 

follows: 
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As a result, the effect of SSBI is almost fully eliminated and the compensated signal only 

contains the desired CSBP. Compared with the linearization filtering schemes, no additional 

unwanted beating products are introduced. At the same time, since the technique is based on 

symbol decisions, it also avoids the noise enhancement (signal-ASE and ASE-ASE beating 

products) which occurs in the linearization filtering schemes. Therefore, it offers potentially 

better compensation performance. However, the limitation of this technique is its dependency 

on the accuracy of the symbol decision making, thus noticeably degrading its performance at 

lower OSNR values.  

3. Experimental setup 

To test and compare the four SSBI compensation schemes described above, transmission 

experiments were carried out using the optical transmission test-bed shown in Fig. 6. It consists 

of a 7 × 25 Gb/s SSB 16-QAM Nyquist-SCM transmitter, an optical fiber recirculating loop 

and a direct-detection receiver to demultiplex and detect the channel of interest.  



 

Fig. 6. Experimental test-bed for WDM DD SSB 16-QAM Nyquist-SCM transmission. Insets: 

(a) Experimental WDM spectrum, (b) Detected digital spectrum.  

The principles of the modulation and demodulation of the SCM signals, and the 

experimental set-up are described in detail in [18], the only differences in this study being that 

a lower subcarrier frequency of 3.43 GHz (0.55 times the symbol rate) and a roll-off factor of 

0.1 for the root-raised cosine pulse shaping and matched filters and a lower WDM channel 

spacing of 10 GHz were used. The parameters of the optical recirculating fiber loop are listed 

in Table 1.  

Table 1. Parameters of loop components and fiber span 

Parameter Value 

fiber length per span (Lspan) 80 km 

fiber attenuation (α) 0.2 dB/km 

dispersion parameter at reference wavelength (D) 17 ps/(nm∙km) 

nonlinear parameter (γ) 1.2 /(W∙km) 

total loss within the loop 31 dB 

EDFA output power 18 dBm 

EDFA noise figure 4.5 dB 

 

The system performance was quantified by bit-error-ratio (BER), obtained by error 

counting, and measurement of the error-vector-magnitude (EVM) [26] over 218 bits. It is worth 

noting that, the optimization of the optical carrier-to-signal power ratio (CSPR) is crucial to 

achieve the optimum performance in DD systems. In the experiment, the optical carrier was 

generated by biasing the IQ-modulators above the null point and the biases were adjusted to 

achieve the desired CSPR values at a given optical signal-to-noise ratio (OSNR), while the 

radio frequency (RF) voltage swing was kept constant (3.4V). 

4. Results and discussions 



The performance of both optical back-to-back and WDM transmission implementing the four 

SSBI cancellation techniques was assessed using the experimental test-bed described above. 

4.1 Optical back-to-back performance 

The optical back-to-back performance was evaluated by amplified spontaneous emission (ASE) 

noise loading at the receiver. The BER curves versus OSNR at 0.1 nm resolution bandwidth 

for cases of without and with the SSBI cancellation schemes are plotted in Fig. 7.  

 

Fig. 7. Experimental BER versus OSNR without and with different digital SSBI post-

compensation schemes in back-to-back operation.  

The optimum system performance was achieved by sweeping the CSPR value from 6 to 14 

dB and adjusting it at each OSNR level. It can be observed that the system performance was 

significantly improved when the SSBI cancellation methods were performed. The required 

OSNR value at the hard-decision forward error correction (HD-FEC) threshold (BER = 3.8 × 

10-3) was found to be 25.3 dB without SSBI cancellation, reducing to 21.0 dB using the single-

stage linearization filter (4.3 dB gain), 19.6 dB using the iterative linearization filter (5.7 dB 

gain), 19.2 dB using the SSBI estimation and cancellation (6.1 dB gain) and finally, 18.9 dB 

(6.4 dB gain) using  the two-stage linearization filter schemes.  Among these four schemes, the 

two-stage linearization filter offered the maximum compensation gain at the HD-FEC threshold. 

Due to accurate approximation of the signal-signal beating terms, the SSBI estimation and 

cancellation scheme provides the best compensation performance at high OSNRs, although its 

performance is noticeably degraded at lower OSNR levels due to increased number of 

inaccurate symbol decisions. In addition, to test the impact of symbol decision making accuracy 

on the compensation performance, the SSBI estimation and cancellation scheme was also 

evaluated in a training-assisted (TA) mode, in which a known training sequence is transmitted. 

In this case, decision errors are avoided when reconstructing the signal-signal beating products. 

Further compensation gain can be observed especially at lower OSNR levels compared to the 

case of the practical system in which symbol decision errors cause inaccuracies in the 

reconstructed signal-signal beating products. This curve, while not achievable in a practical 

system, represents a lower bound on the BER achievable with DSP-based SSBI compensation. 

The additional penalties observed with the linearization filters can be explained by their 

introduction of unwanted beating interference and their noise enhancement. 

In order to observe the trade-off between the SSBI and carrier-ASE beating noise before 

and after applying the SSBI cancellation, the experimental BER curves with respect to the 

CSPR at six different OSNR values (without and with the two-stage linearization filter scheme) 



are plotted in Figs. 8(a) and 8(b). They clearly show that the SSBI cancellation leads to 

improvements in the BERs, and, at the same time, to a reduction in the optimum CSPR value 

by approximately 3 dB. Moreover, the dependence of the system performance on OSNR value 

is reduced when it is SSBI-limited, which matches with the theoretical analysis in [27].  

 

Fig. 8. Experimental BER versus CSPR at different OSNRs (a) without and (b) with two-stage 

linearization filter in back-to-back operation. The dashed black line indicates the shift of the 
optimum CSPR value.  

Furthermore, an assessment of the dependence of the optimum CSPR value on the OSNR 

level using each SSBI compensation technique was carried out by plotting the optimum CSPR 

as a function of OSNR, as shown in Fig. 9. The optimum CSPR value increases with the OSNR, 

as expected. In comparison to the uncompensated case, the optimum CSPR values need to be 

reduced by 2 dB for single-stage linearization filter and approximately 3 dB for iterative 

linearization filters. For SSBI estimation and cancellation scheme, since the compensation 

effectiveness relies on the accuracy of symbol decision making, the reduction is 3 dB for high 

OSNRs (≥ 23 dB), gradually reducing to 2 dB for low OSNRs (< 21 dB). For the SSBI 

estimation and cancellation scheme in training-assisted mode, the reduction of the optimum 

CSPR was found to be 3.5 dB for all values of OSNR. The BER versus OSNR results in Fig. 7 

were obtained at the optimum CSPR values obtained from these results. 



 

Fig. 9. Experimental optimum CSPR versus OSNR without and with different digital SSBI post-

compensation schemes in back-to-back operation. 

4.2 WDM transmission  

Following the assessment of back-to-back performance, WDM transmission experiments over 

distances of 240 km and 480 km of uncompensated standard single-mode fiber (SSMF) were 

carried out using the optical test-bed shown in Fig. 6. The optimum CSPR values were found 

to be 15 dB without and 12-13 dB with SSBI compensation for 240 km transmission, while for 

480 km transmission, the corresponding values were 13 dB without and 10-11 dB with SSBI 

compensation. The BER versus optical launch power per WDM channel without and with the 

four SSBI mitigation schemes at 240 km and 480 km are shown in Figs. 10 and 11, respectively. 

It can be observed that the achieved BERs were significantly decreased by implementing the 

SSBI cancellation schemes. 

 

Fig. 10. Experimental BER versus optical launch power per channel at 240 km WDM 
transmission without and with different digital SSBI post-compensation schemes. 

For WDM transmission over 240 km, as shown in Fig. 10, the optimum launch power per 

channel was reduced by 0.5 dB for the single-stage, iterative, and two-stage linearization 

filtering approaches, and reduced by 1 dB for SSBI estimation and cancellation. The minimum 



BER at the optimum launch power reduced from 2.7×10-3 without SSBI cancellation to 7.0×10-

4 with the linearization filter, further decreasing to 2.5×10-4 and 2.0×10-4 with iterative and two-

stage linearization filtering techniques, respectively. The lowest BER was found to be 1.0×10-

4 when the SSBI estimation and cancellation scheme was used.  

 

Fig. 11. Experimental BER versus optical launch power per channel at 480 km WDM 

transmission without and with different digital SSBI post-compensation schemes. 

Figure 11 shows the WDM transmission performance over 480 km of SSMF. A 0.5 dB 

reduction in the optimum launch power per channel was observed when using the single-stage, 

iterative, and two-stage linearization filtering schemes, compared with a 1 dB reduction whilst 

using the SSBI estimation and cancellation approach. The minimum BER at the optimum 

launch power reduced from 1.6×10-2 without SSBI compensation to 6.2×10-3 with single-stage 

linearization filter and further decreased to 3.2×10-3, 3.0×10-3 and 2.6×10-3 with iterative 

linearization filter, SSBI estimation and cancellation and two-stage linearization filter, 

respectively. In contrast to 240 km transmission, it can be observed that the performance of the 

two-stage linearization filter surpasses the SSBI estimation and cancellation scheme, becoming 

the best performing of the four compensation schemes. This is mainly because the performance 

of the SSBI estimation and cancellation scheme was affected by inaccurate symbol decision 

making at 480 km transmission, due to the lower OSNR. Note that the reduction in gain of all 

SSBI compensation methods at the longer distances is due to fiber nonlinearity dominating the 

transmission performance. 

 



Fig. 12. Experimental BER versus the receiver iteration numbers for the WDM transmission 

over transmission distances of (a) 240 km and (b) 480 km. 

The WDM transmission performance of these SSBI compensation approaches can be 

further compared from the plots of BER versus applied number of iterations in the iterative 

linearization filtering approach, shown in Fig. 12, which, it can be seen, requires multiple 

(approximately four) iterations to achieve the maximum compensation gain, hence causing a 

significant increase in DSP complexity.  

 

Fig. 13. Received constellation diagrams (a) without (EVM = 17.9%) and with (b) single-stage 

linearization filter (EVM = 15.7%), (c) iterative linearization filter (EVM = 13.2%), (d) two-

stage linearization filter (EVM = 13.0%) and (e) SSBI estimation and cancellation (EVM = 
12.4%) after WDM transmission over 240 km. 

To clearly observe the compensation performance using these four SSBI compensation 

techniques, the received constellation diagrams for the transmission over 240 km and 480 km 

are presented in Figs. 13 and 14 with the corresponding error vector magnitudes (EVMs) listed 

in the captions. 

 

Fig. 14. Received constellation diagrams (a) without (EVM = 22.1%) and with (b) single-stage 
linearization filter (EVM = 19.2%), (c) iterative linearization filter (EVM = 17.9%), (d) two-

stage linearization filter (EVM = 17.4%) and (e) SSBI estimation and cancellation (EVM = 

17.6%) after WDM transmission over 480 km. 

Finally, for both 240 km and 480 km transmissions, the performance of all seven WDM 

channels was measured at the optimum launch power per channel, without and with these four 

cancellation schemes, as shown in Figs. 15(a) and 15(b). Assuming 7% HD-FEC overhead, the 

net bit-rate per channel was 23.4 Gb/s (a gross bit rate of 25 Gb/s) and the achieved optical net 

ISD was 2.34 (b/s)/Hz (a gross optical ISD of 2.5 (b/s)/Hz). 



 

Fig. 15. BER for each received WDM channel without and with different digital SSBI post-
compensation schemes over (a) 240 km and (b) 480 km WDM transmissions. 

While this paper has presented a comprehensive comparison of the performance of the four 

compensation schemes, further work will be required to compare, in detail, the computational 

complexity of the different techniques. 

5. Conclusion 

A joint theoretical and experimental assessment of four promising digital receiver-based signal-

signal beat interference (SSBI) compensation techniques (single-stage, iterative, two-stage 

linearization filters and SSBI estimation and cancellation) was reported, for the first time. The 

use of a single experimental link design to assess all these schemes allowed a detailed side-by-

side comparison of their performance. According to the theoretical analysis and experimental 

evaluations, we found that the single-stage linearization filter has the simplest DSP complexity 

but suffers from the problem of the introduction of unwanted beating interference products by 

the filter itself. This problem can be solved by either repeating this linearization filtering 

process iteratively to improve the SSBI approximation or adding an extra linearization stage to 

compensate the majority of the beating interference introduced by the first linearization stage. 

Experimental results show noticeable improvement after applying either of these two 

techniques. Alternatively, the single-stage linearization filter can be combined with a non-

iterative SSBI estimation and cancellation stage, which, as its SSBI estimation is based on 

symbol decisions, potentially offers the best performance at high OSNR values. It was found 

that the latter scheme does indeed offer the best performance at higher OSNR values, but that 

the simpler two stage linearization filtering scheme works best at low OSNRs.  
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