21 research outputs found

    Lipid raft-dependent adhesion of Giardia intestinalis trophozoites to a cultured human enterocyte-like Caco-2/TC7 cell monolayer leads to cytoskeleton-dependent functional injuries

    Get PDF
    Gardia intestinalis, the aetiological agent of giardiasis, one of the most common intestinal diseases in both developing and developed countries, induces a loss of epithelial barrier function and functional injuries of the enterocyte by mechanisms that remain unknown. Three possible mechanisms have been proposed: (i) Giardia may directly alter the epithelial barrier after a close interaction between the trophozoite and polarized intestinal cells, (ii) intestinal functions may be altered by factors secreted by Giardia including an ‘enterotoxin’, proteinases and lectins, and (iii) based on mouse studies, a mechanism involving the intervention of activated T lymphocytes. We used fully differentiated cultured human intestinal Caco‐2/TC7 cells forming a monolayer and expressing several polarized functions of enterocytes of small intestine to investigate the mechanisms by which G. intestinalis induces structural and functional alterations in the host intestinal epithelium. We first report that adhesion of G. intestinalis at the brush border of enterocyte‐like cells involves the lipid raft membrane microdomains of the trophozoite. We report an adhesion‐dependent disorganization of the apical F‐actin cytoskeleton that, in turn, results in a dramatic loss of distribution of functional brush border‐associated proteins, including sucrase‐isomaltase (SI), dipeptidylpeptidase IV (DPP IV) and fructose transporter, GLUT5, and a decrease in sucrose enzyme activity in G. intestinalis ‐infected enterocyte‐like cells. We observed that the G. intestinalis trophozoite promotes an adhesion‐dependent decrease in transepithelial electrical resistance (TER) accompanied by a rearrangement of functional tight junction (TJ)‐associated occludin, and delocalization of claudin‐1. Finally, we found that whereas the occludin rearrangement induced by G. intestinalis was related to apical F‐actin disorganization, the delocalization of claudin‐1 was not.Fil: Humen, Martin Andres. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Perez, Pablo Fernando. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Liévin Le Moal, Vanessa. Université Paris Sud; Francia. Institut National de la Santé et de la Recherche Médicale; Franci

    Up-Regulation of Intestinal Vascular Endothelial Growth Factor by Afa/Dr Diffusely Adhering Escherichia coli

    Get PDF
    BACKGROUND: Angiogenesis has been recently described as a novel component of inflammatory bowel disease pathogenesis. The level of vascular endothelial growth factor (VEGF) has been found increased in Crohn's disease and ulcerative colitis mucosa. To question whether a pro-inflammatory Escherichia coli could regulate the expression of VEGF in human intestinal epithelial cells, we examine the response of cultured human colonic T84 cells to infection by E. coli strain C1845 that belongs to the typical Afa/Dr diffusely adhering E. coli family (Afa/Dr DAEC). METHODOLOGY: VEGF mRNA expression was examined by Northern blotting and q-PCR. VEGF protein levels were assayed by ELISA and its bioactivity was analysed in endothelial cells. The bacterial factor involved in VEGF induction was identified using recombinant E. coli expressing Dr adhesin, purified Dr adhesin and lipopolysaccharide. The signaling pathway activated for the up-regulation of VEGF was identified using a blocking monoclonal anti-DAF antibody, Western blot analysis and specific pharmacological inhibitors. PRINCIPAL FINDINGS: C1845 bacteria induce the production of VEGF protein which is bioactive. VEGF is induced by adhering C1845 in both a time- and bacteria concentration-dependent manner. This phenomenon is not cell line dependent since we reproduced this observation in intestinal LS174, Caco2/TC7 and INT407 cells. Up-regulation of VEGF production requires: (1) the interaction of the bacterial F1845 adhesin with the brush border-associated decay accelerating factor (DAF, CD55) acting as a bacterial receptor, and (2) the activation of a Src protein kinase upstream of the activation of the Erk and Akt signaling pathways. CONCLUSIONS: Results demonstrate that a Afa/Dr DAEC strain induces an adhesin-dependent activation of DAF signaling that leads to the up-regulation of bioactive VEGF in cultured human intestinal cells. Thus, these results suggest a link between an entero-adherent, pro-inflammatory E. coli strain and angiogenesis which appeared recently as a novel component of IBD pathogenesis

    A gastrointestinal anti-infectious biotherapeutic agent: the heat-treated LB

    No full text
    Experimental in vitro and in vivo studies support the hypothesis that heat-treated, lyophilized Lactobacillus acidophilus LB cells and concentrated, neutralized spent culture medium conserve the variety of pharmacological, antimicrobial activities of the live probiotic strain against several infectious agents involved in well-established acute and persistent watery diarrhoea and gastritis. Heat-treated cells and heat-stable secreted molecules trigger multiple strain-specific activities explaining the therapeutic efficacy of L. acidophilus LB. This review discusses the current body of knowledge on the antimicrobial mechanisms of action exerted by L. acidophilus LB demonstrated in in vitro and in vivo experimental studies, and the evidence for the therapeutic efficacy of this anti-infectious biotherapeutic agent proved in randomized clinical trials for the treatment of acute and persistent watery diarrhoea associated with several intestinal infectious diseases in humans

    The Front Line of Enteric Host Defense against Unwelcome Intrusion of Harmful Microorganisms: Mucins, Antimicrobial Peptides, and Microbiota

    No full text
    The intestinal tract is a complex ecosystem that combines resident microbiota and the cells of various phenotypes with complex metabolic activities that line the epithelial wall. The intestinal cells that make up the epithelium provide physical and chemical barriers that protect the host against the unwanted intrusion of microorganisms that hijack the cellular molecules and signaling pathways of the host and become pathogenic. Some of the organisms making up the intestinal microbiota also have microbicidal effects that contribute to the barrier against enteric pathogens. This review describes the two cell lineages present in the intestinal epithelium: the goblet cells and the Paneth cells, both of which play a pivotal role in the first line of enteric defense by producing mucus and antimicrobial peptides, respectively. We also analyze recent insights into the intestinal microbiota and the mechanisms by which some resident species act as a barrier to enteric pathogens. Moreover, this review examines whether the cells producing mucins or antimicrobial peptides and the resident microbiota act in partnership and whether they function individually and/or synergistically to provide the host with an effective front line of defense against harmful enteric pathogens

    An experimental study and a randomized, double-blind, placebo-controlled clinical trial to evaluate the antisecretory activity of Lactobacillus acidophilus strain LB against nonrotavirus diarrhea.

    No full text
    International audienceOBJECTIVE: Previous studies have shown that selected strains of Lactobacillus have the capacity to antagonize rotavirus-induced diarrhea. However, only a few reports have documented their efficacy against nonrotavirus diarrhea. This study involved an experimental investigation and a clinical trial of the antisecretory activity of Lactobacillus acidophilus strain LB in the context of nonrotavirus diarrhea. METHODS: The activity of a culture of L. acidophilus LB or of the lyophilized, heat-killed L. acidophilus LB bacteria plus their spent culture medium was tested in inhibiting the formation of fluid-formed domes in cultured human intestinal Caco-2/TC7 cell monolayers infected with diarrheagenic, diffusely adhering Afa/Dr Escherichia coli C1845 bacteria. A randomized, double-blind, placebo-controlled clinical trial of male or female children who were 10 months of age and presented with nonrotavirus, well-established diarrhea was conducted to evaluate the therapeutic efficacy of a pharmaceutical preparation that contains 10 billion heat-killed L. acidophilus LB plus 160 mg of spent culture medium. RESULTS: Infection of the cells with C1845 bacteria that were treated with L. acidophilus LB culture or the lyophilized, heat-killed L. acidophilus LB bacteria plus their culture medium produced a dosage-dependent decrease in the number of fluid-formed domes as compared with cells that were infected with untreated C1845 bacteria. The clinical results show that in selected and controlled homogeneous groups of children with well-established, nonrotavirus diarrhea, adding lyophilized, heat-killed L. acidophilus LB bacteria plus their culture medium to a solution of oral rehydration solution shortened by 1 day the recovery time (ie, the time until the first normal stool was passed) as compared with children who received placebo oral rehydration solution. CONCLUSIONS: Heat-killed L. acidophilus LB plus its culture medium antagonizes the C1845-induced increase in paracellular permeability in intestinal Caco-2/TC7 cells and produces a clinically significant benefit in the management of children with nonrotavirus, well-established diarrhea

    pH-, Lactic Acid-, and Non-Lactic Acid-Dependent Activities of Probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium

    No full text
    The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029, L. casei DN-114 001, and L. rhamnosus GR1 induced a dramatic decrease in the viability of Salmonella enterica serovar Typhimurium SL1344 mainly attributable to non-lactic acid molecule(s) present in the cell-free culture supernatant (CFCS). These molecules were more active against serovar Typhimurium SL1344 in the exponential growth phase than in the stationary growth phase. We also showed that the production of the non-lactic acid substance(s) responsible for the killing activity was dependent on growth temperature and that both unstable and stable substances with killing activity were present in the CFCSs. We found that the complete inhibition of serovar Typhimurium SL1344 growth results from a pH-lowering effect

    The Lactobacillus plantarum strain ACA-DC287 isolated from a Greek cheese demonstrates antagonistic activity in vitro and in vivo against Salmonella enterica serovar Typhimurium.

    No full text
    International audienceAIMS: The purpose of this study was to investigate the antibacterial activity of the Xynotyri cheese isolate Lactobacillus plantarum ACA-DC287 using a set of in vitro and in vivo assays. METHODS AND RESULTS: The co-culture of L. plantarum strain ACA-DC287 and Salmonella enterica serovar Typhimurium strain SL1344 results in the killing of the pathogen. The killing activity was produced mainly by non-lactic acid molecule(s) that were present in the cell-free culture supernatant of the L. plantarum strain ACA-DC287. The culture of the L. plantarum strain ACA-DC287 inhibited the penetration of S. typhimurium SL1344 into cultured human enterocyte-like Caco-2/TC7 cells. In conventional mice infected with S. typhimurium SL1344, the intake of L. plantarum strain ACA-DC287 results in a decrease in the levels of Salmonella associated with intestinal tissues or those present in the intestinal contents. In germ-free mice, the L. plantarum strain ACA-DC287 colonized the gastrointestinal tract. CONCLUSIONS: The L. plantarum strain ACA-DC287 strain exerts anti-Salmonella activity similar that of the established probiotic strains Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029 and Lactobacillus johnsonii La1. SIGNIFICANCE AND IMPACT OF THE STUDY: The observation that a selected cheese Lactobacillus strain exerted antibacterial activity that was similar to those of probiotic Lactobacillus strains, is of interest for the use of this strain as an adjunct strain for the production of health-giving cheeses

    Two atypical enteropathogenic Escherichia coli strains induce the production of secreted and membrane-bound mucins To benefit their own growth at the apical surface of human mucin-secreting intestinal HT29-MTX cells

    Get PDF
    In rabbit ligated ileal loops, two atypical enteropathogenic Escherichia coli (aEPEC) strains, 3991-1 and 0421-1, intimately associated with the cell membrane, forming the characteristic EPEC attachment and effacement lesion of the brush border, induced a mucous hypersecretion, whereas typical EPEC (tEPEC) strain E2348/69 did not. Using cultured human mucin-secreting intestinal HT29-MTX cells, we demonstrate that apically aEPEC infection is followed by increased production of secreted MUC2 and MUC5AC mucins and membrane-bound MUC3 and MUC4 mucins. The transcription of the MUC5AC and MUC4 genes was transiently upregulated after aEPEC infection. We provide evidence that the apically adhering aEPEC cells exploit the mucins' increased production since they grew in the presence of membrane-bound mucins, whereas tEPEC did not. The data described herein report a putative new virulence phenomenon in aEPECInstitut National de la Santé et de la Recherche Médicale (Inserm), Université Paris-Sud 11Ministère de la Recherche (to A.L.S.)FAPES
    corecore