386 research outputs found
Experimental analysis of dense multipath components in an industrial environment
This work presents an analysis of dense multipath components (DMC) in an industrial workshop. Radio channel sounding was performed with a vector network analyzer and virtual antenna arrays. The specular and dense multipath components were estimated with the RiMAX algorithm. The DMC covariance structure of the RiMAX data model was validated. Two DMC parameters were studied: the distribution of radio channel power between specular and dense multipath, and the DMC reverberation time. The DMC power accounted for 23% to 70% of the total channel power. A significant difference between DMC powers in line-of-sight and nonline-of-sight was observed, which can be largely attributed to the power of the line-of-sight multipath component. In agreement with room electromagnetics theory, the DMC reverberation time was found to be nearly constant. Overall, DMC in the industrial workshop is more important than in office environments: it occupies a fraction of the total channel power that is 4% to 13% larger. The industrial environment absorbs on average 29% of the electromagnetic energy compared to 45%-51% for office environments in literature: this results in a larger reverberation time in the former environment. These findings are explained by the highly cluttered and metallic nature of the workshop
Cavity cooling of an optically trapped nanoparticle
We study the cooling of a dielectric nanoscale particle trapped in an optical
cavity. We derive the frictional force for motion in the cavity field, and show
that the cooling rate is proportional to the square of oscillation amplitude
and frequency. Both the radial and axial centre-of-mass motion of the trapped
particle, which are coupled by the cavity field, are cooled. This motion is
analogous to two coupled but damped pendulums. Our simulations show that the
nanosphere can be cooled to 1/e of its initial momentum over time scales of
hundredths of milliseconds.Comment: 11 page
A new LAN concept for LEP machine networks
LEP networks, implemented in 1987, are based on two Token-ring backbones using TDM as the transmission medium. The general topology is based on routers and on a distributed backbone. To avoid the instabilities introduced by the TDM and all the conversion layers it has been decided to upgrade the LEP machine network and to evaluate a new concept for the overall network topology. The new concept will also fulfil the basic requirements for the future LHC network. The new approach relies on a large infrastructure which connects all the eight underground pits of LEP with single-mode fibres from the Prevessin control room (PCR). From the bottom of the pits, the two adjacent alcoves will be cabled with multi-mode fibres. FDDI has been selected as the MAC protocol. This new concept is based on switching and routing between the PCR and the eight pits. In each pit a hub will switch between the FDDI LMA backbone and the local Ethernet segments. Two of these segments will reach the alcoves by means of a 10Base-F link. In a second phase implementation, this scheme will provide for workgroup organisation and bandwidth allocation. The technological choices make a future evolution towards ATM and 100Base Ethernet possible and allow us to preserve a large part of the investment. This paper describes the implementation of this scheme
Impact of polarization diversity in massive MIMO for industry 4.0
The massive polarimetric radio channel is evaluated in an indoor industrial scenario at 3.5 GHz using a 10×10 uniform rectangular array (URA). The analysis is based on (1) propagation characteristics like the average received gain and the power to interference ratio from the Gram matrix and (2) system-oriented metrics such as sum-rate capacity with maximum-ratio transmitter (MRT). The results clearly show the impact of polarization diversity in an industrial scenario and how it can considerably improve different aspects of the system design. Results for sum-rate capacity are promising and show that the extra degree of freedom, provided by polarization diversity, can optimize the performance of a very simple precoder, the MRT
Polarization properties of specular and dense multipath components in a large industrial hall
This paper presents an analysis of the polarization characteristics of specular and dense multipath components (SMC & DMC) in a large industrial hall based on frequency-domain channel sounding experiments at 1.3 GHz with 22 MHz bandwidth. The RiMAX maximum-likelihood estimator is used to extract the full polarimetric SMC and DMC from the measurement data by taking into account the polarimetric radiating patterns of the dual-polarized antennas. Cross-polar discrimination (XPD) values are presented for the measured channels and for the SMC and DMC separately
Polarimetric distance-dependent models for large hall scenarios
A comprehensive polarimetric distance-dependent model of the power delay profile (PDP) and path gain is proposed. The model includes both specular multipath components (SMCs) and dense multipath components (DMC), the latter being modeled with an exponential and power law. The parameters of the model were estimated from polarimetric measurements of a large hall radio channel under line-of-sight (LOS) conditions at 1.3 GHz with a dedicated procedure. The validity and robustness of the proposed approach are provided by the good agreement between the polarimetric data and models for the investigated transmitter-receiver distance range. Furthermore, the description of the radio channel with path loss models is discussed for cases where the DMC is included, and a two-step method to compute the path loss characteristics directly from the measured data is developed. The results of this contribution highlight the fact that a complete polarimetric description of all propagation mechanisms and related path loss models is desired to design faithful polarimetric radio channel models
- …