61 research outputs found

    Image Sharpness-Based System Design for Touchless Palmprint Recognition

    Get PDF
    Currently, many palmprint acquisition devices have been proposed, but how to design the systems are seldom studied, such as how to choose the imaging sensor, the lens, and the working distance. This chapter aims to find the relationship between image sharpness and recognition performance and then utilize this information to direct the system design. In this chapter, firstly, we introduce the development of recent palmprint acquisition systems and abstract their basic frameworks to propose the key problems needed to be solved when designing new systems. Secondly, the relationship between the palm distance in the field of view (FOV) and image pixels per inch (PPI) is studied based on the imaging model. Suggestions about how to select the imaging sensor and camera lens are provided. Thirdly, image blur and depth of focus (DOF) are taken into consideration; the recognition performances of the image layers in the Gaussian scale space are analyzed. Based on this, an image sharpness range is determined for optimal imaging. The experiment results are obtained using different algorithms on various touchless palmprint databases collected using different kinds of devices. They could be references for new system design

    Region of Interest Localization Methods for Publicly Available Palmprint Databases

    Get PDF
    So far, there exist many publicly available palmprint databases. However, not all of them have provided the corresponding region of interest (ROI) images. If everyone uses their own extracted ROI images for performance testing, the final accuracy is not strictly comparable. Since ROI localization is the critical stage of palmprint recognition. The location precision has a significant impact on the final recognition accuracy, especially in unconstrained scenarios. This problem has limited the applications of palmprint recognition. However, many currently published surveys only focus on feature extraction and classification methods. Throughout these years, many new ROI localization methods have been proposed. In this chapter, we will group the existing ROI localization methods into different categories, analyze their basic ideas, reproduce some of the codes, make comparisons of their performances, and provide further directions. We hope this could be a useful reference for further research

    Dopamine and Serotonin Modulate Free Amino Acids Production and Na+/K+ Pump Activity in Chinese Mitten Crab Eriocheir sinensis Under Acute Salinity Stress

    Get PDF
    The Chinese mitten crab Eriocheir sinensis lives in saline or fresh water during different life stages and exhibits a complex life history, making it an ideal model to study the salinity adaptation of euryhaline animals. In this study, RNA-seq techniques, and determinations of free amino acids (FAAs), monoamine neurotransmitters, and Na+/K+ pump activity, were employed to understand the osmoregulatory mechanism in Chinese mitten crab. A total of 15,138 differentially expressed genes were obtained from 12 transcriptome libraries. GO enrichment analysis revealed that the mRNA expression profiles were completely remodeled from 12 to 24 h after salinity stress. The neuroendocrine system was activated under stimulation, and the monoamine neurotransmitters including dopamine (DA) and serotonin (5-HT) were released to modulate osmoregulation. Furthermore, the Na+/K+ pump in crab hemocytes was significantly inhibited post salinity stress, resulting in increased intracellular ion concentrations and osmotic pressure to sustain the osmotic balance. Moreover, six key FAAs, including alanine (Ala), proline (Pro), glycine (Gly), glutamate (Glu), arginine (Arg), and aspartate (Asp), were overexpressed to modulate the extracellular osmotic balance during salinity adaptation. Interestingly, the immune genes were not enriched in the GO analysis, implying that the immune system might not contribute fundamentally to the tolerance upon fluctuating ambient salinity in the Chinese mitten crab. These results collectively demonstrated that the Chinese mitten crab had evolved an efficient regulation mechanism by modulating the FAAs production and Na+/K+ pump activity to sustain the osmotic balance independent of the immune system, in which the neuroendocrine modulation, especially generated by the monoamine neurotransmitter, played an indispensable role

    Chinese Open Instruction Generalist: A Preliminary Release

    Full text link
    Instruction tuning is widely recognized as a key technique for building generalist language models, which has attracted the attention of researchers and the public with the release of InstructGPT~\citep{ouyang2022training} and ChatGPT\footnote{\url{https://chat.openai.com/}}. Despite impressive progress in English-oriented large-scale language models (LLMs), it is still under-explored whether English-based foundation LLMs can perform similarly on multilingual tasks compared to English tasks with well-designed instruction tuning and how we can construct the corpora needed for the tuning. To remedy this gap, we propose the project as an attempt to create a Chinese instruction dataset by various methods adapted to the intrinsic characteristics of 4 sub-tasks. We collect around 200k Chinese instruction tuning samples, which have been manually checked to guarantee high quality. We also summarize the existing English and Chinese instruction corpora and briefly describe some potential applications of the newly constructed Chinese instruction corpora. The resulting \textbf{C}hinese \textbf{O}pen \textbf{I}nstruction \textbf{G}eneralist (\textbf{COIG}) corpora are available in Huggingface\footnote{\url{https://huggingface.co/datasets/BAAI/COIG}} and Github\footnote{\url{https://github.com/FlagOpen/FlagInstruct}}, and will be continuously updated

    Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis

    Get PDF
    The non-coding 3′-untranslated region (UTR) plays an important role in the regulation of microRNA (miRNA) functions, since it can bind and inactivate multiple miRNAs. Here, we show the 3′-UTR of CD44 is able to antagonize cytoplasmic miRNAs, and result in the increased translation of CD44 and downstream target mRNA, CDC42. A series of cell function assays in the human breast cancer cell line, MT-1, have shown that the CD44 3′-UTR inhibits proliferation, colony formation and tumor growth. Furthermore, it modulated endothelial cell activities, favored angiogenesis, induced tumor cell apoptosis and increased sensitivity to Docetaxel. These results are due to the interaction of the CD44 3′-UTR with multiple miRNAs. Computational algorithms have predicted three miRNAs, miR-216a, miR-330 and miR-608, can bind to both the CD44 and CDC42 3′-UTRs. This was confirmed with luciferase assays, western blotting and immunohistochemical staining and correlated with a series of siRNA assays. Thus, the non-coding CD44 3′-UTR serves as a competitor for miRNA binding and subsequently inactivates miRNA functions, by freeing the target mRNAs from being repressed

    A new species of Argyromys (Rodentia, Mammalia) from the oligocene of the valley of lakes (Mongolia): its importance for palaeobiogeographical homogeneity across Mongolia, China and Kazakhstan

    Get PDF
    We describe a new species of Rodentia (Mammalia), Argyromys cicigei sp. nov. from Toglorhoi (fossil bed TGW-A/2a) in Mongolia and Ulantatal (fossil beds UTL 1 and UTL 7) in China. Its tooth morphology differs from the type species Argyromys aralensis from Akespe in Kazakhstan by smaller size and simpler structures. Argyromys has been assigned in different families of Muroidea, such as Tachyoryctoididae and Spalacidae. However, the presence of common characters indicates a closer relationship of Argyromys with the genera of Cricetidae s.l. (subfamilies Eucricetodontinae; Cricetopinae; Cricetodontinae and Gobicricetodontinae among others) from Asia than with the earliest representatives of Spalacidae or the endemic Tachyoryctoididae. Argyromys cicigei sp. nov. possesses a simple anterocone and anteroconid in the upper and lower first molars, respectively, which is characteristic for Cricetidae s.l. It has a flat occlusal surface in worn specimens; weakly-developed posterolophs; an oblique protolophule and metaloph on the upper molars and it lacks a labial anterolophid on the m1. These traits are also typical of the Oligocene genera Aralocricetodon and Plesiodipus, included in the subfamilies Cricetodontinae and Gobicricetodontinae respectively. The cladistic analysis performed here supports this hypothesis. The clade formed by Argyromys species is grouped with other cricetid taxa (s.l). Spalacids, however, form a different clade, as do the tachyoryctoids. Previous authors state that the Aral Formation (Kazakhstan) should be dated to the Oligocene instead of the Miocene, based on the presence of several taxa. The finds of Argyromys in both regions supports the statement that they are closer in age than previously thought. The occurrence of Argyromys in Kazakhstan, Mongolia and China evidences the biogeographic unity of the Central Asian bioprovince during the Oligocene

    A 3′-Untranslated Region (3′UTR) Induces Organ Adhesion by Regulating miR-199a* Functions

    Get PDF
    Mature microRNAs (miRNAs) are single-stranded RNAs of 18–24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3′UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3′UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3′UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3′UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3′UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3′UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3′UTR may be an approach in the development of gene therapy
    corecore