509 research outputs found

    A Survey Study on Consumer Perception of Mobile- Commerce Applications

    Get PDF
    AbstractMobile commerce (m-commerce) can have an important influence on business and society in the future. Hence, m- commerce developers and practitioners must understand consumers’ perception of m-commerce applications in order to better design and deliver m-commerce service. This paper studied Chinese consumers’ perception of m-commerce applications by using the survey methodology. Firstly, 44 mobile applications were adopted on the basis of related study work, and then the web-based questionnaire was employed for obtaining online Chinese consumers’ importance ratings with regard to each mobile application. The survey result is helpful for both academics and practitioners to better design innovative and satisfying m-commerce applications

    Evidence for self-organized criticality phenomena in prompt phase of short gamma-ray bursts

    Full text link
    The prompt phase of gamma-ray burst (GRB) contains essential information regarding the physical nature and central engine, which are as yet unknown. In this paper, we investigate the self-organized criticality (SOC) phenomena in GRB prompt phase as done in X-ray flares of GRBs. We obtain the differential and cumulative distributions of 243 short GRB pulses, such as peak flux, FWHM, rise time, decay time, and peak time in the fourth BATSE TTE Catalog with the Markov Chain Monte Carlo (MCMC) technique. It is found that these distributions can be well described by power-law models. In particular, comparisons are made in 182 short GRB pulses in the third Swift GRB Catalog from 2004 December to 2019 July. The results are essentially consistent with those in BATSE ones. We notice that there is no obvious power-law index evolution across different energy bands for either BATSE or Swift sGRBs. The joint analysis suggests that GRB prompt phase can be explained by a Fractal-Diffusive, Self-Organized Criticality (FD-SOC) system with the spatial dimension S = 3 and the classical diffusion ? = 1. Our findings show that GRB prompt phases and X-ray flares possess the very same magnetically dominated stochastic process and mechanism.Comment: 18 pages, 10 figures, accepted for publication in ApJ

    Characterization of ovarian clear cell carcinoma using target drug-based molecular biomarkers: implications for personalized cancer therapy

    Get PDF
    Information of antibodies used in immunohistochemistry. Table S2A. Relationship with clinicopathological factors-HGSC. Table S2B. Relationship with clinicopathological factors-CCC. Table S3 Association molecular biomarkers expression and platinum-based chemotherapeutic response. Table S4. Comparison of molecular biomarkers between recurrent and disease-free patients. (DOCX 42 kb

    Patterns and driving forces of dimensionality-dependent charge density waves in 2H-type transition metal dichalcogenides

    Full text link
    Two-dimensional (2D) materials have become a fertile playground for the exploration and manipulation of novel collective electronic states. Recent experiments have unveiled a variety of robust 2D orders in highly-crystalline materials ranging from magnetism to ferroelectricity and from superconductivity to charge density wave (CDW) instability. The latter, in particular, appears in diverse patterns even within the same family of materials with isoelectronic species. Furthermore, how they evolve with dimensionality has so far remained elusive. Here we propose a general framework that provides a unfied picture of CDW ordering in the 2H polytype of four isoelectronic transition metal dichalcogenides 2H-MX2_2 (M=Nb, Ta and X=S, Se). We first show experimentally that whilst NbSe2_2 exhibits a strongly enhanced CDW order in the 2D limit, the opposite trend exists for TaSe2_2 and TaS2_2, with CDW being entirely absent in NbS2_2 from its bulk to the monolayer. Such distinct behaviours are then demonstrated to be the result of a subtle, yet profound, competition between three factors: ionic charge transfer, electron-phonon coupling, and the spreading extension of the electronic wave functions. Despite its simplicity, our approach can, in essence, be applied to other quasi-2D materials to account for their CDW response at different thicknesses, thereby shedding new light on this intriguing quantum phenomenon and its underlying mechanisms

    Carbon-assisted growth and high visible-light optical reflectivity of amorphous silicon oxynitride nanowires

    Get PDF
    Large amounts of amorphous silicon oxynitride nanowires have been synthesized on silicon wafer through carbon-assisted vapor-solid growth avoiding the contamination from metallic catalysts. These nanowires have the length of up to 100 ÎĽm, with a diameter ranging from 50 to 150 nm. Around 3-nm-sized nanostructures are observed to be homogeneously distributed within a nanowire cross-section matrix. The unique configuration might determine the growth of ternary amorphous structure and its special splitting behavior. Optical properties of the nanowires have also been investigated. The obtained nanowires were attractive for their exceptional whiteness, perceived brightness, and optical brilliance. These nanowires display greatly enhanced reflection over the whole visible wavelength, with more than 80% of light reflected on most of the wavelength ranging from 400 to 700 nm and the lowest reflectivity exceeding 70%, exhibiting performance superior to that of the reported white beetle. Intense visible photoluminescence is also observed over a broad spectrum ranging from 320 to 500 nm with two shoulders centered at around 444 and 468 nm, respectively

    Adsorption and dissociation of water on Zr(0001) with density-functional theory studies

    Full text link
    The adsorption and dissociation of isolated water molecule on Zr(0001) surface are theoretically investigated for the first time by using density-functional theory calculations. Two kinds of adsorption configurations with almost the same adsorption energy are identified as the locally stable states, i.e., the flat and upright configurations respectively. It is shown that the flat adsorption states on the top site are dominated by the 1b1b_{1}-dd band coupling, insensitive to the azimuthal orientation. The diffusion between adjacent top sites reveals that the water molecule is very mobile on the surface. For the upright configuration, we find that besides the contribution of the molecular orbitals 1b1b_{1} and 3a1a_{1}, the surface→\rightarrowwater charge transfer occurring across the Fermi level also plays an important role. The dissociation of H2_{2}O is found to be very facile, especially for the upright configuration, in good accordance with the attainable experimental results. The present results afford to provide a guiding line for deeply understanding the water-induced surface corrosion of zirconium.Comment: 16 pages, 5 figure
    • …
    corecore