2,717 research outputs found

    Properties of Slicing Conditions for Charged Black Holes

    Get PDF
    We consider an earlier analysis by Baumgarte and de Oliveira (2022) of static Bona-Massó slices of stationary, nonrotating, uncharged black holes, represented by Schwarzschild spacetimes, and generalize that approach to Reissner-Nordström (RN) spacetimes, representing stationary, nonrotating black holes that carry a nonzero charge. This charge is parametrized by the charge-to-mass ratio λ ≡ Q/M, where M is the black-hole mass and the charge Q may represent electrical charge or act as a placeholder for extensions of general relativity. We use a height-function approach to construct time-independent, spherically symmetric slices that satisfy a so-called Bona-Massó slicing condition. We compute quantities such as critical points and profiles of geometric quantities for several different versions of the Bona-Massó slicing condition. In some cases we do this analytically, while in others we use numerical root-finding to solve quartic equations. We conclude that in the extremal limit as λ → 1, all slices that we consider approach a unique slice that is independent of the chosen Bona-Massó condition. We then study dynamical, i.e. time-dependent, Bona-Massó slices by analytically predicting the qualitative behavior of the central lapse, i.e. the lapse at the black-hole puncture, for a particular slice that Alcubierre (1997) proposed to mitigate gauge shocks. These shock-avoiding slices are a viable alternative to the very common so-called 1 + log slices but exhibit different behavior in dynamical simulations. We use a perturbation of the radial coordinate at the location of the puncture to recover approximately harmonic late-time oscillations of the central lapse that Baumgarte and Hilditch (2022) observed in numerical simulations

    Hydrogen electrooxidation under conditions of high mass transport in room-temperature ionic liquids and the role of underpotential-deposited hydrogen

    Get PDF
    The hydrogen oxidation reaction (HOR), an electrocatalytic reaction of fundamental and applied interest, was studied in the protic ionic liquid (PIL) diethylmethylammonium trifluoromethanesulfonate, [dema][TfO], at Pt electrodes using rotating disk electrode (RDE) and ultramicroelectrode (UME) voltammetry. A steady-state HOR current is observed during RDE voltammetry at overpotentials > 50 mV but an additional plateau is observed in the overpotential region 50-200 mV when using UMEs. The difference in voltammetric responses is attributed to higher rate of mass transport to the UME than to the RDE. Three models have been used to fit the experimental data. The first is a dual-pathway model, which assumes that the Tafel-Volmer and Heyrovsky-Volmer pathways are both active over the potential range of interest and no blockage of catalytic sites occurs during the reaction. The second is a dual-pathway model, which assumes that reaction intermediates block access of H2 to catalytic sites. The third is based on the premise that underpotential-deposited hydrogen atoms (Hupd) can block adsorption and electrooxidation of H2 at the Pt surface. While each model fits the polarisation curves reasonably well, detailed analysis suggests that the Hupd- blocking model describes the responses better. To the best of our knowledge, this work is the first to demonstrate the advantages of UME voltammetry over RDE voltammetry for studying electrocatalytic reactions in PILs, and the first to show that Hupd can inhibit an electrocatalytic reactions in an ionic liquid, a factor that may become important as the technological applications of these liquids increase

    Dynamical perturbations of black-hole punctures: effects of slicing conditions

    Full text link
    While numerous numerical relativity simulations adopt a 1+log slicing condition, shock-avoiding slicing conditions form a viable and sometimes advantageous alternative. Despite both conditions satisfying similar equations, recent numerical experiments point to a qualitative difference in the behavior of the lapse in the vicinity of the black-hole puncture: for 1+log slicing, the lapse appears to decay approximately exponentially, while for shock-avoiding slices it performs approximately harmonic oscillation. Motivated by this observation, we consider dynamical coordinate transformations of the Schwarzschild spacetime to describe small perturbations of static trumpet geometries analytically. We find that the character of the resulting equations depends on the (unperturbed) mean curvature at the black-hole puncture: for 1+log slicing it is positive, predicting exponential decay in the lapse, while for shock-avoiding slices it vanishes, leading to harmonic oscillation. In addition to identifying the value of the mean curvature as the origin of these qualitative differences, our analysis provides insight into the dynamical behavior of black-hole punctures for different slicing conditions.Comment: 8 pages, 2 figure

    Monoamine Oxidase A is Required for Rapid Dendritic Remodeling in Response to Stress

    Get PDF
    Background: Acute stress triggers transient alterations in the synaptic release and metabolism of brain monoamine neurotransmitters. These rapid changes are essential to activate neuroplastic processes aimed at the appraisal of the stressor and enactment of commensurate defensive behaviors. Threat evaluation has been recently associated with the dendritic morphology of pyramidal cells in the orbitofrontal cortex (OFC) and basolateral amygdala (BLA); thus, we examined the rapid effects of restraint stress on anxiety-like behavior and dendritic morphology in the BLA and OFC of mice. Furthermore, we tested whether these processes may be affected by deficiency of monoamine oxidase A (MAO-A), the primary enzyme catalyzing monoamine metabolism. Methods: Following a short-term (1–4h) restraint schedule, MAO-A knockout (KO) and wild-type (WT) mice were sacrificed, and histological analyses of dendrites in pyramidal neurons of the BLA and OFC of the animals were performed. Anxiety-like behaviors were examined in a separate cohort of animals subjected to the same experimental conditions. Results: In WT mice, short-term restraint stress significantly enhanced anxiety-like responses, as well as a time-dependent proliferation of apical (but not basilar) dendrites of the OFC neurons; conversely, a retraction in BLA dendrites was observed. None of these behavioral and morphological changes were observed in MAO-A KO mice. Conclusions: These findings suggest that acute stress induces anxiety-like responses by affecting rapid dendritic remodeling in the pyramidal cells of OFC and BLA; furthermore, our data show that MAO-A and monoamine metabolism are required for these phenomena

    Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif

    Get PDF
    MicroRNAs modulate tumorigenesis through suppression of specific genes. As many tumour types rely on overlapping oncogenic pathways, a core set of microRNAs may exist, which consistently drives or suppresses tumorigenesis in many cancer types. Here we integrate The Cancer Genome Atlas (TCGA) pan-cancer data set with a microRNA target atlas composed of publicly available Argonaute Crosslinking Immunoprecipitation (AGO-CLIP) data to identify pan-tumour microRNA drivers of cancer. Through this analysis, we show a pan-cancer, coregulated oncogenic microRNA ‘superfamily’ consisting of the miR-17, miR-19, miR-130, miR-93, miR-18, miR-455 and miR-210 seed families, which cotargets critical tumour suppressors via a central GUGC core motif. We subsequently define mutations in microRNA target sites using the AGO-CLIP microRNA target atlas and TCGA exome-sequencing data. These combined analyses identify pan-cancer oncogenic cotargeting of the phosphoinositide 3-kinase, TGFβ and p53 pathways by the miR-17-19-130 superfamily members

    Chiral Supergravity

    Get PDF
    We study the linearized approximation of N=1 topologically massive supergravity around AdS3. Linearized gravitino fields are explicitly constructed. For appropriate boundary conditions, the conserved charges demonstrate chiral behavior, so that chiral gravity can be consistently extended to chiral supergravity.Comment: 30 page
    • …
    corecore