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Abstract

We consider an earlier analysis by Baumgarte and de Oliveira (2022) of static Bona-Massó
slices of stationary, nonrotating, uncharged black holes, represented by Schwarzschild
spacetimes, and generalize that approach to Reissner-Nordström (RN) spacetimes, rep-
resenting stationary, nonrotating black holes that carry a nonzero charge. This charge
is parametrized by the charge-to-mass ratio λ ≡ Q/M , where M is the black-hole mass
and the charge Q may represent electrical charge or act as a placeholder for extensions
of general relativity. We use a height-function approach to construct time-independent,
spherically symmetric slices that satisfy a so-called Bona-Massó slicing condition. We
compute quantities such as critical points and profiles of geometric quantities for several
different versions of the Bona-Massó slicing condition. In some cases we do this ana-
lytically, while in others we use numerical root-finding to solve quartic equations. We
conclude that in the extremal limit as λ→ 1, all slices that we consider approach a unique
slice that is independent of the chosen Bona-Massó condition.

We then study dynamical, i.e. time-dependent, Bona-Massó slices by analytically
predicting the qualitative behavior of the central lapse, i.e. the lapse at the black-hole
puncture, for a particular slice that Alcubierre (1997) proposed to mitigate gauge shocks.
These shock-avoiding slices are a viable alternative to the very common so-called 1 + log
slices but exhibit different behavior in dynamical simulations. We use a perturbation of
the radial coordinate at the location of the puncture to recover approximately harmonic
late-time oscillations of the central lapse that Baumgarte and Hilditch (2022) observed in
numerical simulations.
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1 Introduction

1.1 General Relativity

General relativity (GR) is a relativistic theory of gravity [1] governed by a set of nonlinear,

coupled partial differential equations (PDEs) known as Einstein’s equations,

Rab −
1

2
Rgab + Λgab = 8πTab. (1.1)

Here Rab is the Ricci tensor, its trace R ≡ Ra
a the Ricci scalar, gab the spacetime metric,

Λ the cosmological constant, and Tab the stress-energy tensor.1 (See Sec. 4.2 in [2] for

the construction of these quantities). Einstein’s equations relate the curvature of 4D

spacetime, encoded by the Ricci tensor, to the density and flux of energy and momentum,

encoded by the stress-energy tensor. The Ricci tensor can be computed from the spacetime

metric gab, whose components act as coefficients in the invariant line element,

ds2 = gab dx
a dxb , (1.2)

which measures distances between spacetime events. In GR, test objects follow their

straightest possible paths—geodesics—through curved spacetimes absent external forces.

For example, a satellite is not held in orbit by an attraction to Earth, but rather, unless

1In this thesis we use geometrized, or natural, units with c = G = 1 and ε−1
0 = 4π. In this system,

length, mass, and charge all have units of time, or equivalently, time, mass, and charge all have units of
length (and so on).
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disturbed by a collision with space debris (e.g.) the satellite travels along a geodesic

through spacetime curved by the mass of the Earth.

Einstein’s equations admit gravitational waves as vacuum solutions, i.e. solutions

in regions of spacetime where Tab = 0. These are traveling perturbations of the metric

that induce oscillatory contractions and expansions of spacetime itself. One hundred years

after Einstein predicted [3] their existence, the Laser Interferometer Gravitational-Wave

Observatory (LIGO) [4] detected gravitational radiation emitted by the coalescence of

distant binary black holes. This discovery showed gravitational waves are viable astrophys-

ical messengers that can transmit information about events that may be unavailable in

the electromagnetic regime. Since the initial LIGO detection in 2015, gravitational-wave

astronomy has rapidly advanced [5] and enabled empirical tests of GR in strong gravity

[6]. Gravitational waves may yet provide insight into supermassive black holes at galactic

centers, mergers of massive binaries, the evolution of black holes over cosmic time, and

outstanding questions in gravitation, particle physics, and cosmology, such as quantum

gravity and the nature of dark matter and energy [7–9].

To identify their astrophysical origins, gravitational-wave signatures are compared

against the predictions of GR. However, the full Einstein equations are analytically

intractable for many realistic astrophysical scenarios, such as the inspiral, merger, and

ringdown of binary black holes, which produced the 2015 LIGO signal [4]. Therefore, for

such scenarios, the equations of GR must be solved using numerical integration rather

than hand calculations. This is not so straightforward, however.

1.2 Numerical Relativity

Numerical relativists use computers to integrate Einstein’s equations of GR. Computers

make predictions in full GR possible in principle, but numerical simulations employ

discrete methods and are liable to crash where components of the spacetime metric diverge,
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namely at the event horizon(s) and curvature singularity of a black-hole spacetime and

possible coordinate singularities that may arise throughout the simulation. To avoid these

numerical pitfalls, researchers routinely exploit so-called gauge freedom to transform to

more suitable—and stable—coordinate systems. Einstein’s equations and their physical

solutions are invariant under these coordinate transformations, so one may represent the

same physical problem in various ways.

3 + 1 Formalism

The standard approach to numerically integrating Einstein’s equations involves a so-

called 3+1 decomposition that separates time derivatives and components from their

spatial counterparts. Arnowitt, Deser, and Misner (ADM) introduced this formalism

in 1962 [10] and Smarr and York [11] made refinements in 1978. The 3 + 1 approach

breaks Einstein’s equations into constraint equations that the initial data must satisfy

and evolution equations that govern the time evolution. The evolution equations are

made to be consistent with the constraint equations, assuring that the data will satisfy

the constraints for all time, provided they satisfy the constraints initially. Analogously

with electromagnetism, wherein the E and B fields are invariant under a transformation

of the vector potential A → A + ∇ϕ, where ϕ is an arbitrary gauge scalar, the 3+1

decomposition of Einstein’s equations introduces free gauge2 variables that do not affect

the physics but play a vital role in designing an apt numerical simulation (see Sec. 2.3 in

[12] for a concise pedagogical overview).

The original ADM formalism was an essential prerequisite for working with full

general relativity on the computer and was widely adopted. Shibata and Nakamura (1995)

[13] and Baumgarte and Shapiro (1998) [14] modified the standard ADM equations to

achieve great improvements in stability for simulating gravitational waves over long time

2Coordinate conditions play the same role in general relativity as gauge conditions in electromagnetism.
Unless otherwise noted, in this thesis we will use the terms “gauge” and “coordinate” interchangeably
hereafter.
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Figure 1.1: An illustration of the normal na and lapse α (solid line) and shift βi (dotted line)
between spatial hypersurfaces at coordinate times t and t+ dt. The vector ta = αna + ba

(dashed line) connects points with the same spatial coordinate xi between hypersurfaces.

scales. The so-called Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism has since

been adopted by many authors as a default (see, e.g., [15–19]).

Conditions on the time coordinate may be interpreted geometrically as generating

the shape of so-called slices of spacetime. These are spatial hypersurfaces constant in a

chosen time coordinate t that are separated by intervals dt. The 4D spacetime is thus

foliated by slices of three spatial dimensions stacked along a temporal axis. In order to

visualize these slices in two dimensions, we need to remove one degree of freedom; e.g., by

taking a cross section in the equatorial plane with θ = π/2. The curvature of the slices is

apparent when the slices are embedded in a diagram of one dimension higher (see Fig. 1.1).

In this thesis we will work with several important geometric quantities that describe the

spatial hypersurfaces; these are introduced below.3

Spacetime Geometry

Whereas t denotes coordinate time, the proper time τ is the time that an observer

measures. The normal vector na is orthogonal to the spatial slices; here we choose the

3The following discussion of the geometry of spacetime slices is derived from [20].
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normal to be future-oriented, that is, pointing in the direction of increasing coordinate

time. The lapse function α ≡ dτ/dt measures the advance of time between adjacent

spatial slices. More precisely, the lapse is the ratio of the elapsed proper time dτ for

an observer following the normal (a normal observer) between slices to the change in

coordinate time dt between slices. An observer whose spatial coordinates xi are held

constant is said to be a coordinate observer. The shift vector βi measures the coordinate

displacement ∆xi of a coordinate observer relative to a normal observer between adjacent

slices. The normal, lapse, and shift are illustrated in Fig. 1.1.

The spatial metric γab = gab+nanb is the purely spatial projection of the spacetime

metric gab onto the hypersurface and measures spatial distances (i.e. with no component

normal to the surface). Since γ0a = 0 we hereafter write the spatial metric with spatial

indices ij as opposed to spacetime indices ab. From the spatial metric we can define the

extrinsic curvature Kab ≡ −γ c
a γ

d
b ∇cnd whose trace K ≡ Ki

i we refer to as the mean

curvature. In words, the extrinsic curvature is the spatial projection of the covariant

derivative ∇ of the normal along the hypersurface. Since Kab is a spatial tensor by

construction, we will restrict its indices to spatial indices.

Coordinate Conditions

In terms of the 3 + 1 quantities introduced above, the line element (1.2) can now be

expressed as

ds2 = α2 dt2 + γij
(
dxi + βi dt

)(
dxj + βj dt

)
. (1.3)

We now use t̄ to denote the time coordinate in the original spacetime metric and let t denote

a new time coordinate. We may then transform t̄ to t using a so-called height-function

approach. As Fig. 1.2 illustrates, the height function h measures the distance between

the new slices of constant t and the old slices of constant t̄. For static slices in spherical
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Figure 1.2: Slices of constant coordinate times t and t̄ related by a height function.

symmetry, h = h(R), while for dynamical slices in spherical symmetry, h = h(t, R). By

substituting the new time coordinate into a given spacetime metric and comparing with

the 3 + 1 line element (1.3), one may identify the lapse, spatial metric, and shift on the

slices in terms of the height function. We will detail this approach in Ch. 3.

Early singularity-avoiding gauge conditions such as maximal slicing (K = ∂tK = 0)

constructed slices that ended before the black-hole singularity, but these were prone to

so-called grid stretching that made the spacetime near the singularity hard to resolve

over long time scales [21]. In 2005, the annus mirabilis of numerical relativity, three

seminal papers [22–24] made breakthroughs in dynamical black-hole binary simulations.

Pretorius [22, 25] introduced so-called generalized harmonic coordinates implemented via

gauge source functions and demonstrated that this scheme was stable enough to produce

data from the inspiral, merger, and gravitational-wave emissions of a binary black-hole

spacetime. Also that year, Campanelli et al. [23] and Baker et al. [24] used the BSSN

formalism and an algebraic gauge condition introduced by Bona and Massó et al. [26] in

1995, known as Bona-Massó slicing, to achieve remarkably successful simulations. The so-

called moving puncture gauge improved on the puncture method introduced by Brügmann

in 1999 [21], which avoided the physical singularity in favor of a static (time-independent)

coordinate singularity known as the puncture. The puncture could now move across

the grid, and stable, long-term evolutions became possible. However, why this approach

6



Figure 1.3: Figure 2 in Hannam et al. (2008) [28] shows an embedding diagram of
a trumpet slice of the Schwarzschild spacetime. The asymptotically cylindrical end
represents the black-hole puncture, while the asymptotically flat end represents spatial
infinity.

worked so well was unclear; in particular, what happens to the puncture as the spacetime

is evolved and whether the evolution terminates in a stationary slice was a mystery (see

[27] for an overview of the status of numerical relativity at the time).

The desire to understand these breakthroughs motivated researchers to return

to a much simpler, analytically known spacetime, namely the Schwarzschild spacetime,

representing a single stationary black hole in spherical symmetry and the simplest exact

solution to Einstein’s equations. Hannam et al. (2007) [16] examined the geometry of

stationary Bona-Massó slices of Schwarzschild spacetimes, revealing that the puncture

in such slices converges to an infinitely long, asymptotically cylindrical “throat” with a

finite areal radius4 R, thereby avoiding the physical singularity without inducing grid

stretching. In the limit as R → ∞, the slice is asymptotically flat, i.e. the spacetime

metric approaches the Minkowski metric. These slices are called trumpet slices due to

their geometry, which the embedding diagram in Fig. 1.3 illustrates.

4The areal radius is computed as the ratio of the proper circumference of the cylinder to 2π.
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1.3 The Black-Hole Charge

While the Schwarzschild spacetime is commonly used as a simple test case for coordinate

conditions in numerical relativity, a number of authors [29–40] have recently considered the

astrophysical role of the black-hole charge and simulated the interactions of charged black

holes, whose spacetimes are given by the Reissner-Nordström (RN) metric. Bozzola and

Paschalidis [36], for example, showed that an upper bound on the black-hole charge can

be recovered from gravitational-wave data and also used the charge parameter to quantify

empirical deviation from general relativity in the context of modified theories of gravity.

The electrical charge of black holes is often assumed negligible due to the low likelihood

of accreting an appreciable net charge and neutralization due to vacuum polarization [41].

Though the charge Q can represent electrical charge, it can also represent magnetic charge

(supposing that magnetic monopoles exist) or so-called dark charge associated with U(1)

symmetry (see [35]), or act as a placeholder term for modified theories of gravity such as

the scalar-tensor-vector theory proposed by Moffat [42].
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2 Solutions to Einstein’s Equations

2.1 The Schwarzschild Spacetime

Representing a single static black hole in spherical symmetry, the Schwarzschild spacetime

[43] is the simplest exact solution to the Einstein equations. The line element expressed

in Schwarzschild coordinates is

ds2 = −
(
1− 2M

R

)
dt2 +

(
1− 2M

R

)−1

dR2 +R2 dΩ2 , (2.1)

where M is the mass of the black hole and R the areal radius, and the differential solid

angle dΩ = sin θ dθ dϕ. Evidently, the metric component

gtt = −
(
1− 2M

R

)
(2.2)

diverges at R = 0. This location marks the physical singularity at the center of the black

hole. Observe also that the component

gRR =

(
1− 2M

R

)−1

(2.3)

diverges at R = 2M . This is the event horizon, which marks the boundary of the black-

hole interior. Within the radius of the event horizon, all worldlines (trajectories through

spacetime) point toward the singularity; therefore, once the event horizon is crossed, not
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even null paths (i.e. light) can re-emerge from the black hole. Since no light, and hence no

information, can travel from within the black-hole interior to the surrounding spacetime,

events whose radial coordinate R < 2M cannot causally affect events on the outside.

According to the so-called no-hair theorem [44–46], all black holes are fully char-

acterized by just three parameters: their mass, charge, and spin. Representing a black

hole whose charge and spin are zero, the Schwarzschild spacetime has been used for its

analytical amiability to understand coordinate conditions used to simulate black-hole

binaries. However, the Schwarzschild spacetime can be generalized easily to black holes

with nonzero charge by the addition of a charge term in the metric components (2.2) and

(2.3). Such black holes are represented by the Reissner-Nordström spacetime [47].

2.2 The Reissner-Nordström Spacetime

Expressed in Schwarzschild coordinates, the Reissner-Nordström line element is

ds2 = −
(
1− 2M

R
+
Q2

R2

)
dt2 +

(
1− 2M

R
+
Q2

R2

)−1

dR2 +R2 dΩ2 , (2.4)

where Q is the black-hole charge. Since the charge-to-mass ratio λ ≡ Q/M is expected

to be small in most astrophysical scenarios, this term is often ignored (see Sec. 1.3),

reducing the metric to Schwarzschild. In this thesis we are motivated to work with the

RN metric by recent studies of charged black-hole binaries and assessments of the role of

the black-hole charge [29–40]. Moreover, the charge is of theoretical interest due to the

possibility of so-called naked singularities, i.e. singularities that are not concealed by an

event horizon, which super-extremal RN spacetimes with λ > 1 would possess. To see

this, we again locate the horizon at a root of the function

gtt = −
(
1− 2M

R
+
Q2

R2

)
, (2.5)

10



given by

R =M ±
√
M2 −Q2 (Q > 0). (2.6)

These two roots correspond to two event horizons, one inner (“−”) and one outer (“+”).

Evidently, in the extremal case λ = 1 =⇒ Q =M , these horizons converge at R =M .

For λ > 1 =⇒ Q > M , the roots are imaginary and therefore no horizon exists. The

metric components gtt and gRR still clearly diverge at R = 0, however, corresponding to a

naked singularity. See Secs. 6.4 and 6.5 in [2] for a textbook discussion of the black-hole

mass, spin, and charge and the RN spacetime, including naked singularities.
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3 The Height-Function Approach

3.1 General Procedure

In this thesis we make transformations of the time coordinate using a height function that

measures the distance between new and old time slices. In spherical symmetry we relate

the new and old coordinate times—t and t̄, respectively—by

t̄ = t− h(t, R) =⇒ dt̄ =
(
1− ḣ

)
dt− h′ dR , (3.1)

where the dot denotes a partial derivative with respect to time and a prime with respect to

areal radius (i.e. ḣ ≡ ∂h/∂t and h′ ≡ ∂h/∂R). For static slices, h = h(R) only. Consider

a spacetime metric expressed in coordinate time t̄ as

ds2 = −F dt̄ 2 + F−1 dR2 +R2 dΩ2 , (3.2)

where F = F (R) is an as yet unspecified function of the areal radius. Note that the real

roots of F correspond to the locations of the black-hole event horizons. We substitute

the transformation (3.1) into the metric to obtain

ds2 = −F
((

1− ḣ
)2
dt2 − 2

(
1− ḣ

)
h′ dt dR + (h′)

2
dR2

)
+ F−1 dR2 +R2 dΩ2

= −F
(
1− ḣ

)2
dt2 + 2F

(
1− ḣ

)
h′ dt dR− F−1

(
1− F 2(h′)

2
)
dR2 +R2 dΩ2 . (3.3)

12



We now compare Eq. (3.3) with the general 3 + 1 representation (1.3) of the spacetime

metric. From this, we identify the RR-component of the spatial metric as

γRR =
1− F 2(h′)2

F
, (3.4)

allowing us to identify the (contravariant) R-component of the shift via

βR = γRRβ
R = F

(
1− ḣ

)
h′ dt dR . (3.5)

Dividing both sides of the second equality by γRR, we obtain

βR =
F 2
(
1− ḣ

)
h′

1− F 2(h′)2
. (3.6)

We observe in Eq. (3.3) that the angular components of the shift vanish, as expected in

spherical symmetry.1 Now we can compute the square of the lapse from

−α2 + γRR

(
βR
)2

= −F
(
1− ḣ

)2
; (3.7)

isolating the lapse, we obtain

α2 = F
(
1− ḣ

)2
+
F 3
(
1− ḣ

)2
(h′)2

1− F 2(h′)2
=
F
(
1− ḣ

)2
1− F 2(h′)2

. (3.8)

Note that α and βR do not necessarily vanish at the horizon(s), where F = 0, since h′

may diverge there such that these quantities remain finite. Indeed, we later rely on this

behavior to construct slices that penetrate the outer horizon, i.e. slices that connect a

root of the lapse within the outer horizon to α → 1 in the asymptotic limit R → ∞. To

1Since the shift vector βi =
(
βR, 0, 0

)
in spherical symmetry, hereafter we refer to βR as simply “the

shift” to reduce verboseness.
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compute the mean curvature K, we invoke the identity2

∇aA
a =

1√
|g|
∂a

(√
|g|Aa

)
, (3.9)

where the determinant g of the spacetime metric can be written as

g = −α2γRRR
4 sin2 θ. (3.10)

The mean curvature is then

K = −∇an
a = − 1√

|g|
∂a

(√
|g|na

)
. (3.11)

3.2 Static Slices

For static slices, i.e. ḣ = 0, the lapse (3.8) and the shift (3.6) reduce to

α2 =
F

1− F 2(h′)2
(3.12a)

and

βR =
F 2h′

1− F 2(h′)2
, (3.12b)

and we observe that the relations

βR = α
√
α2 − F (3.13a)

2See, e.g., Solution 7.7 in Lightman et al. [48] for a derivation.
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and

γRR = α−2 (3.13b)

allow us to eliminate the height function. (These do not hold for dynamical slices due to

the presence of time derivatives of the height function, which cannot be eliminated.) By

Eq. (3.11) and relation (3.13b), the static mean curvature becomes

K =
1

R2

d

dR

(
R2β

R

α

)
=

2

R

βR

α
+

(
βR
)′

α
− βR

α2
α′. (3.14)

The Black-Hole Puncture

We denote the areal coordinate where the lapse vanishes as R0, i.e. α(R0) = 0, and the

derivative of the lapse evaluated at its root as

a1 ≡ α′(R0). (3.15)

The root of the lapse terminates the slice. To leading order, relation (3.13b) implies that

γRR ≃ a−2
1 (R−R0)

−2 (R → R0) (3.16)

in the neighborhood of the root of the lapse. Assuming 0 < a1 <∞, we can integrate the

line element in this limit as

∫ R

R0

ds =

∫ R

R0

√
γRR dR̃ =

∫ R

R0

dR̃ a−1
1

(
R̃−R0

)−1

= a−1
1 ln

(
R̃−R0

)∣∣∣∣R
R0

= ∞. (3.17)

We see that the root R0 is located an infinite proper distance away from all points R > R0,

and therefore we refer to this location as the black-hole puncture. Expanding the lapse to

leading order and rearranging Eq. (3.12a), we also observe also that, in the vicinity of the

15



puncture, the height function diverges according to

h′0 ≃ − 1√
−F (R0)a1(R−R0)

(R → R0), (3.18)

where we have adopted a negative sign in taking a square root.3

For static slices, the root of the lapse occurs where h′0 diverges. As relation (3.13b)

makes apparent, α → 0 implies γRR → ∞ in the static case. We also note that, for static

horizon-penetrating slices, for which the lapse is nonzero and finite on the outer horizon,

Eq. (3.12a) indicates that the height function must diverge at the outer horizon, too,

since F = 0 there. This latter divergence could have been avoided by starting with a

horizon-penetrating coordinate system in Eq. (3.2), rather than with Schwarzschild or

RN coordinates.

We have not yet chosen a coordinate gauge, so the analysis in this chapter is

valid in general. In the next chapter we will proceed to implement various such gauge

conditions and study the properties of the resulting slices.

3Note that F (R0) < 0 since the root lies within the outer horizon, i.e. R0 < 2M .
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4 Static Bona-Massó Slices

This chapter discusses the collaborative work of Li, Baumgarte, Dennison and de Oliveira

(2022) [49] with some additional detail.

4.1 Motivation

The Bona-Massó slicing condition was used to remarkable success in the 2005 numerical

relativity breakthrough papers (see Sec. 1.2) and continues to be adopted in numerical

simulations. The Bona-Massó equation is a PDE

(
∂t − βi∂i

)
α = −α2f(α)K, (4.1)

where α is the lapse, βi the shift vector, K the mean curvature, and the Bona-Massó

function f(α) a yet-to-be-chosen function of the lapse. Choices of f(α) generate particular

Bona-Massó slices. One very common choice is f(α) = 2/α, for which, in the absence of

a shift, one can show that the lapse becomes

α = 1 + ln γ, (4.2)

where γ is the determinant of the spatial metric, earning it the name “1 + log” slicing

(see [50]). In this thesis we will refer to the generalized form f(α) = k/α as 1+ log slicing,

even though Eq. (4.2) follows from k = 2 only.
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Studying 1 + log slices of Schwarzschild spacetimes yielded insights into their

advantages for numerical simulations of much more complicated spacetimes [16, 18, 28,

51]. Recently, Baumgarte and de Oliveira [52] explored the properties of static 1 + log

slices and static slices generated by some alternative choices of f(α) for Schwarzschild

spacetimes. We are interested in whether these families of static slicing conditions retain

their advantages with the introduction of a nonzero black-hole charge, i.e. whether they

exhibit similar properties for RN spacetimes, the charged counterparts to Schwarzschild

spacetimes. We therefore generalize the analysis in [52] to RN spacetimes, considering

the following Bona-Massó functions f(α).

Following [52] we begin with 1 + log slices, whose Bona-Massó function is

f(α) =
k

α
, (4.3)

since this choice (with k = 2) is very common and has proven remarkably successful.

Dennison and Baumgarte (2014) [53] proposed the alternative

f(α) =
1− α

α
(4.4)

for constructing trumpet slices that can be understood entirely analytically, making

them valuable test cases, and as in [52] we consider this choice also. The remaining

two Bona-Massó functions we consider were designed by Alcubierre [54, 55] to mitigate

so-called gauge shocks. These are coordinate discontinuities that arise during the evolution

of the spacetime and can propagate across the grid faster than light. Fully shock-avoiding

slices are given by

f(α) = 1 +
κ

α2
(4.5)

where we require that the constant κ > 0. Despite their advantages in numerical
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simulations (see, e.g., [56, 57]), these slices allow the lapse to become negative over the

course of a numerical evolution [54, 55, 57]. Therefore we follow [52] in also considering

slices that avoid gauge shocks to leading order only and whose lapse is not liable to

become negative. The corresponding Bona-Massó function is

f(α) =
a20

2α + (a0 − 2)α2
(4.6)

and these slices are called zero order shock-avoiding slices [55].

4.2 Methods

Coordinate Transformation

The Reissner-Nordström metric is given by Eq. (3.2) with

F (R) = 1− 2M

R
+
Q2

R2
. (4.7)

For static and spherically symmetric slices, the Bona-Massó equation (4.1) reduces to

βRα′ = α2f(α)K. (4.8)

Substituting our result for the static mean curvature (3.14) into Eq. (4.8), we have

βRα′ = α2f(α)

(
2

R

βR

α
+

(
βR
)′

α
− βR

α2
α′

)
. (4.9)

We can separate variables to rewrite this as

dα

αf(α)
+
dα

α
= 2

dR

R
+
dβR

βR
(4.10)
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and integrate to obtain the equation

∫ α

0

dα̃

α̃f(α̃)
+ C0 + lnα = 2 lnR + ln βR (4.11)

where C0 is a constant of integration. Collecting the logarithms, we have

ln

(
R2β

R

α

)
= C0 +

∫ α

0

dα̃

α̃f(α̃)
. (4.12)

Writing C0 ≡ (1/2) lnC where the new constant C has units of M4 and applying the

relation (3.13a), we obtain the equation

R2
√
α2 − F =

√
CeI(α), (4.13)

where I(α) is defined as the integral

I(α) ≡
∫ α

0

dα̃

α̃f(α̃)
. (4.14)

Isolating the lapse, we arrive at the result

α2 = 1− 2M

R
+
Q2

R2
+
Ce2I(α)

R4
. (4.15)

This equation for the lapse is identical to Eq. (13) in [52] for Schwarzschild slices except

for the appearance of the charge term.

Regularity Condition

The constant of integration in Eq. (4.15) is as yet undetermined. However, following [27,

28] we can choose C by imposing a regularity condition for the derivative of the lapse.
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Consider Eq. (4.8). Using relation (3.13a), the mean curvature (3.14) becomes

K =
2

R

√
α2 − F +

1

α

(
α′
√
α2 − F +

α(2αα′ − F ′)

2
√
α2 − F

)
− α′

√
α2 − F

α

=
2

R

√
α2 − F +

2αα′ − F ′

2
√
α2 − F

. (4.16)

Now if we apply relation (3.13a) to Eq. (4.8) prior to integrating, we obtain

α
√
α2 − Fα′ = α2f(α)

(
2

R

√
α2 − F +

2αα′ − F ′

2
√
α2 − F

)
. (4.17)

Multiplying both sides by the term
√
α2 − F , this becomes

R
(
α2 − F

)
α′ = 4αf(α)

(
α2 − F

)
+ 2Rα2f(α)α′ −Rαf(α)F ′. (4.18)

Now collecting the α′ terms we have

2R
(
α2 − F − α2f(α)

)
α′ = αf(α)

(
4α2 − 4F −RF ′). (4.19)

Solving for α′ yields

α′ =
αf(α)

2R

4α2 − 4F −RF ′

α2(1− f(α))− F
, (4.20)

thus isolating the radial derivative of the lapse. Now inserting Eq. (4.7) with

F ′(R) =
2M

R2
− 2Q2

R3
, (4.21)
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our equation (4.20) for the derivative of the lapse becomes

α′ =
αf(α)

2R

4α2 − 4 + 8M/R− 4Q2/R2 − 2M/R + 2Q2/R2

α2(1− f(α))− 1 + 2M/R−Q2/R2

=
αf(α)

R

2− 3M/R +Q2/R2 − 2α2

1− 2M/R +Q2/R2 + α2(f(α)− 1)
. (4.22)

We now observe that the denominator of the right-hand side of Eq. (4.22) may vanish

at a radius beyond the root R0 of the lapse, causing α′ to diverge. We are interested

in trumpet slices whose lapse is continuous in the region R ∈ [R0,∞) and penetrates

the outer horizon1 R+ such that α vanishes at R0 ∈ (R−, R+) (see [58]). Assuming the

term α2(f(α)− 1) = 0 for α = 0 and that f(α) > 1 for all α, horizon-penetrating slices

necessarily go through a critical point between the root of the lapse and the outer horizon.2

This is because F (R+) = 0 and −α(R0)
2(f(α(R0))− 1) = 0; both these functions are

non-positive in the region R ∈ [R0, R+] and intersect so that the denominator of the

right-hand side of Eq. (4.22) vanishes. Therefore we must avoid the consequent irregularity

in α by requiring that the numerator of the right-hand side of Eq. (4.22) vanish at the

same location as the denominator, keeping α′ finite. To determine such a critical point

(αc, Rc), where αc is the critical lapse and Rc the critical radius, we consider the system

of equations

2− 3M

Rc

+
Q2

R2
c

− 2α2
c = 0 (4.23a)

and

1− 2M

Rc

+
Q2

R2
c

+ α2
cf(αc)− α2

c = 0. (4.23b)

1Slices that penetrated the inner horizon also would have an imaginary lapse at the horizons by the
following argument. If R0 < R− then F (R0) > 0, meaning we could evaluate Eq. (4.15) at the root R0 to
conclude C < 0. At the radii R− and R+ of the horizons, where F vanishes, we would then have α2 < 0,
whose solutions are imaginary.

2The assumption f(α) > 1 for all α is true for all slices we consider except the analytical trumpets
given by Eq. (4.4), which may be constructed so as to avoid a critical point altogether.
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We can eliminate the charge by subtracting Eq. (4.23b) from Eq. (4.23a) to obtain

1− M

Rc

− α2
c(f(αc) + 1) = 0. (4.24)

Solving for the critical radius, we have

Rc =
M

1− α2
c(f(αc) + 1)

. (4.25)

Substituting this expression for the critical radius back into Eq. (4.23a), we have

0 = 2− 3
(
1− α2

c(f(αc) + 1)
)
+
Q2

M2

(
1− α2

c(f(αc) + 1)
)2 − 2α2

c

= λ2(f(αc) + 1)2α4
c +

(
(f(αc) + 1)

(
3− 2λ2

)
− 2
)
α2
c + λ2 − 1. (4.26)

For some choices of f(α), this quartic equation for the critical lapse simplifies considerably

and we can obtain αc analytically. For others we use numerical root-finding for various

specific values of λ. Given αc we can recover Rc from Eq. (4.25), and then, if the integral

I(α) (4.14) is known analytically, substitute both these results into Eq. (4.15) to compute

the constant of integration C that ensures the regularity of the lapse.

Note that the above procedure works only if αf(α) remains finite in the limit

α → 0. This condition holds for all slices we consider here except for the shock-avoiding

slices given by Eq. (4.5). For those slices,

αf(α) =
α2 + κ

α
, (4.27)

which diverges when α vanishes. The denominator of the right-hand side of Eq. (4.22)

therefore vanishes at α = 0, meaning that (provided the parameter κ obeys a certain

condition that we later discuss) the critical radius coincides with the root of the lapse

rather than the solution to Eq. (4.23b).

23



The Root of the Lapse

For these static slices, we identify the black-hole puncture as the location where the

lapse vanishes. Having chosen C, we can compute the root R0 of the lapse by evaluating

Eq. (4.15) at α = 0. As with the critical lapse and radius, for some slices we can do

this analytically, while for others we use numerical root-finding. Next, we follow [52] in

studying the behavior of the lapse profile in the vicinity of the puncture. To do this we

compute the derivative a1 of the lapse evaluated at its root, in most cases via implicit

differentiation of Eq. (4.15), except for the shock-avoiding condition (4.5), for which it is

more convenient to take the limit R → R0 of Eq. (4.22). In order to choose valid roots

R0 among the real solutions to the quartic equation (4.15), we check that a1 ≥ 0 so that

the lapse stays non-negative near the root.

We note that we can compute the static mean curvature evaluated at the puncture

by rearranging the Bona-Massó equation (4.8) as

K0(R0) = lim
R→R0

βRα′

αf(α)
= lim

α→0

√
−F (R0)a1
αf(α)

, (4.28)

where we have used relation (3.13a) in the second equality. Evidently, whether or not

K0(R0) is finite depends on the behavior of αf(α) as α → 0, which we have not yet

evaluated in Eq. (4.28).

The Isotropic Radius

We transform the Schwarzschild areal radius R to the isotropic radius r by comparing

the spatial part of the line element (1.3),

dl2 = γRR dR
2 +R2 dΩ2 = α−2 dR2 +R2 dΩ2 , (4.29)
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where we have used relation (3.13b), with the spatial line element in isotropic coordinates,

dl2 = ψ4
(
dr2 + r2 dΩ2

)
, (4.30)

where ψ is a so-called conformal factor. The metric (4.30) does not distinguish between

the radial and angular elements dr2 and r2 dΩ2. This representation readily translates to

Cartesian coordinates as

dr2 + r2 dΩ2 ∝ ψ−4
(
dx2 + dy2 + dz2

)
, (4.31)

whereas the metric (4.29) does not. In general, isotropy gives dl2 = ψ4ηij, where ηij is a

Euclidean metric (see, e.g., Exercise 1.5 in [12]). For this reason isotropic coordinates are

often favored in codes that employ a 3D Cartesian grid.

By comparing (4.29) with (4.30) we obtain the system

α−1 dR = ψ2 dr (4.32a)

and

R = ψ2r. (4.32b)

Dividing Eq. (4.32a) by Eq. (4.32b) yields

dr

r
=
dR

Rα
=
dR/dα

R

dα

α
, (4.33)

which gives us the integral

r = exp

∫
dR/dα

R

dα

α
. (4.34)
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Near the black-hole puncture we can make the leading-order approximations

dR

dα
≃ 1

a1
(r → 0) (4.35)

and R ≃ R0, allowing us to evaluate Eq. (4.34) as

r ∝ exp

(
1

a1R0

lnα

)
(α → 0), (4.36)

or equivalently,

α ∝ r1/γ (r → 0) (4.37)

where, as in [18], the exponent

1

γ
≡ a1R0. (4.38)

According to Eq. (4.37), if the exponent 1/γ is a non-negative integer n, derivatives of

the lapse with respect to r of order n+ 1 and greater vanish at the puncture. However,

if 1/γ is not an integer, derivatives of order ⌈1/γ⌉ and higher diverge at the puncture,

producing numerical error. In particular, we are concerned with the behavior of ∂2α/∂r2 ,

which remains finite at the puncture so long as 1/γ is a non-negative integer.

For general values of R > R0 (i.e. away from the puncture), we evaluate Eq. (4.34)

numerically via the prescription set by Eqs. (46), (47), and (67) of [18] in order to compute

r(R). For consistency we confirm that the lapse behaves according to the power law

(4.37); see also Eq. (56) in [18]. From Eq. (4.32b) we observe that the conformal factor

ψ =

√
R

r
∝ r−1/2 (r → 0), (4.39)

which is characteristic behavior for trumpet slices.
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4.3 Results

The Extremal Limit

Before discussing particular choices of the Bona-Massó function f(α), we consider extremal

RN black holes with Q =M =⇒ λ = 1. For λ = 1, Eq. (4.15) becomes

α2 =

(
R−M

R

)2

+
Ce2I(α)

R4
. (4.40)

Since the exponential term is always positive, solutions for the lapse must have C ≤ 0 in

order to have a real root, independently of the integral I(α) (4.14).

As we note in Sec. 4.2, the procedure for locating the critical point depends on

the behavior of αf(α) in the limit α → 0. If αf(α) remains finite near the puncture, the

critical radius is a simultaneous root of Eqs. (4.23). For λ = 1, Eq. (4.23b) is

(
1− M

Rc

)2

+ α2
c(f(αc)− 1) = 0. (4.41)

Assuming f(αc) > 1, Eq. (4.41) implies that the only critical point for a non-negative

αc occurs at Rc = M with αc = 0, for which Eq. (4.23a) has a root also. Evaluating

Eq. (4.41) at this critical point gives C = 0 in the extremal limit.

For shock-avoiding slices, for which αf(α) (4.27) diverges at the puncture, the

critical lapse αc = 0 and the critical radius Rc is a root of Eq. (4.23a). In the extremal

limit, Eq. (4.23a) has roots R0 =M/2 and R0 =M . Only for the latter does the derivative

a1 (3.15) at the puncture take a non-imaginary value, such that we obtain exactly the

same critical values as above for the other slices.

We therefore conclude that for all Bona-Massó functions f(α) considered here, we
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have C = 0 in the extremal limit such that Eq. (4.41) yields

α =
R−M

R
(λ = 1), (4.42)

from which follows

a1 =
1

γ
= 1 (λ = 1). (4.43)

1 + log Slices

For f(α) = k/α (4.3), the integral (4.14) evaluates to

I(α) =
α

k
, (4.44)

and hence Eq. (4.15) becomes

α2 = 1− 2M

R
+
Q2

R2
+
Ce2α/k

R4
. (4.45)

Evaluating this equation at either the critical point or the root of the lapse yields two

expressions for the constant of integration, namely

C = R4e−2αc/k

(
α2
c − 1 +

2M

R
− Q2

R2
c

)
= −R4

0 + 2MR3
0 −Q2R2

0. (4.46)

For these slices, Eq. (4.26) for the critical lapse becomes

0 = λ2α4
c + 2kλ2α3

c +
((
k2 + 2

)
λ2 + 1

)
α2
c + k

(
3− 2λ2

)
αc + λ2 − 1. (4.47)

The analytical solutions to this quartic equation are unwieldy, so we locate the 1 + log

critical point numerically. The solution to Eq. (4.46) for the root R0 is similarly unwieldly,

28



so we locate R0 numerically also.

Next, we take the derivative of the lapse at the root by implicit differentiation of

Eq. (4.45), which gives

2αα′ =
2M

R2
− 2Q2

R3
+ C

(
2e2α/kα′

kR4
− 4e2α/k

R5

)
. (4.48)

Collecting the α′ terms gives

(
2αR5 − 2C

k
e2α/kR

)
α′ = 2MR3 − 2Q2R2 − 4Ce2α/k, (4.49)

and we isolate α′ as

α′ =
2MR3 − 2Q2R2 − 4Ce2α/k

2αR5 − (2C/k)e2α/kR
. (4.50)

Now evaluating at the root, i.e. setting α = 0, we obtain

a1 = −2MR3
0 − 2Q2R2

0 − 4C

(2C/k)R0

; (4.51)

the exponent (4.38) is then

1

γ
= −2MR3

0 − 2Q2R2
0 − 4C

(2C/k)
(4.52)

for these slices. Since Eq. (4.45) for α is transcendental, we obtain solutions α(R;λ)

numerically for k = 2. Lastly, we transform from the areal radius R to the isotropic radius

r (see Sec. 4.2) and plot α(r) for selected values of λ in Fig. 4.1.
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Figure 4.1: The numerical profile of the lapse α(r) for λ ∈ {0, 0.4, 0.8, 0.999} for 1 + log
slices with k = 2. The dotted lines represent the expected power-law behavior α ∝ r1/γ

in the limit r → 0.

Analytical Trumpet Slices

Next, we consider the trumpet slices given by f(α) = (1− α)/α (4.4). For uncharged

black holes, these slices are completely analytical [53]. For charged black holes, Eq. (4.26)

for these slices is

0 =
3

1− αc

− λ2 − 2

(1− αc)
2 +

2

(1− αc)
2α

2
c . (4.53)

Multiplying both sides by the term (1− αc)
2 yields

0 = 3(1− αc)− λ2(1− αc)
2 − 2 + 2α2

c =
(
2− λ2

)
α2
c −

(
3− 2λ2

)
αc + 1− λ2. (4.54)
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This quadratic for the critical lapse has roots

αc =
3− 2λ2 ±

√
(2λ2 − 3)2 − 4(2− λ2)(1− λ2)

2(2− λ2)
=

3− 2λ2 ± 1

4− 2λ2
; (4.55)

evidently, choosing “+” in Eq. (4.55) gives αc = 1 and therefore Rc = ∞, meaning the

slice avoids a critical point up to the asymptotic limit. Here we focus on slices whose

critical point lies within the outer horizon, so we instead choose the “−” solution to yield

αc =
1− λ2

2− λ2
, (4.56)

whose corresponding critical radius (4.25) is

Rc =M
(
2− λ2

)
. (4.57)

This agrees with the uncharged limit (Rc, αc) → (2M, 0.5) as λ→ 0 considered in [52].

The integral (4.14) evaluates to

I(α) = − ln(1− α), (4.58)

so Eq. (4.15) becomes

α2 = 1− 2M

R
+
Q2

R2
+

C

R4(1− α)2
, (4.59)

and thus, via Eqs. (4.57) and (4.56), the constant of integration

C =M4
(
1− λ2

)
. (4.60)

With the above, Eq. (4.59) yields a quartic equation for the root R0 with two real solutions,

31



one of which is R0 =M . Taking a radial derivative of Eq. (4.59), we have

2αα′ =
2M

R2
− 2Q2

R3
+ C

(
2α′

R4(1− α)3
− 4

R5(1− α)2

)
. (4.61)

Grouping the α′ terms,

2

(
R5α− CR

(1− α)3

)
α′ = 2MR3 − 2Q2R2 − 4C

(1− α)2
, (4.62)

so α′ is given by

α′ =
MR3 −Q2R2 − 2C/(1− α)2

R5α− CR/(1− α)3
. (4.63)

Evaluating this at the root of the lapse and inserting Eq. (4.60) yields

a1 =
MR2

0 +Q2R0

M4(1− λ2)
+

2

R0

, (4.64)

from which we observe that R0 =M is the only root for which a1 > 0. In particular, for

R0 = M , we have a1 = 1/M and hence 1/γ = 1. These results are independent of the

charge-to-mass ratio.

Substituting Eq. (4.60) back into Eq. (4.59), we obtain two real solutions for the

lapse as a function of the areal radius. However, only the solution

α(R) =
R−M

R
(4.65)

satisfies α′ > 0 for all R. This solution is identical to the extremal solution (4.42) but,

remarkably, holds for all λ and not just λ = 1. To check this result, we consider the

limit a → 0 and Λ → 0, where a is the rotation parameter and Λ the cosmological

constant, of the analytical trumpet slices of Kerr-Newman-de Sitter (KNdS) spacetimes

that Dennison, Baumgarte, and Montero (2014) [59] constructed. The KNdS spacetime
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represents a spinning, charged black hole in the presence of the cosmological constant.

For RN spacetimes with R0 =M , the line element (26) in [59] reduces to

ds2 = −F dt2 + 2M

√
1− λ2

R−M
dt dR +

R2

(R−M)2
dR2 +R2 dΩ2 (4.66)

with F given by Eq. (4.7). Comparing this with the 3 + 1 line element (1.3), we identify

the RR-component of the spatial metric

γRR =
R2

(R−M)2
, (4.67)

from which we compute the shift

βR = γ−1
RR

M

R−M

√
1− λ2 =

M(R−M)
√
1− λ2

R2
. (4.68)

The lapse is then given by

α2 = γRR

(
βR
)2

+ F =
M2 −Q2

R2
+ 1− 2M

R
+
Q2

R2
=
M2 +R2 − 2MR

R2
=

(M −R)2

R2
;

(4.69)

taking the positive root, we recover

α =
R−M

R
, (4.70)

corroborating the solution (4.65). We convert this solution to isotropic coordinates and

plot the result α(r) in Fig. 4.2.
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Figure 4.2: The analytical profile of the lapse α(r) for analytical trumpet slices does not
depend on the black-hole charge.

As an example of the utility of analytical trumpet slices, we can use the analytical

solution for the lapse (4.65) to compute the height function directly for the uncharged

case λ = 0. Substituting Eq. (4.65) into Eq. (3.12a) and solving for h′(R), we obtain

h′(R) =

√
α2 − F

αF
=

MR√
(R−M)2(R− 2M)2

(λ = 0), (4.71)

where we have taken a positive square root. Integration then yields

h(R) =M ln
2(R− 2M)

(R−M)
(λ = 0), (4.72)

where we have arbitrarily chosen a constant of integration so that h(3M) = 0. Note that

h(R) diverges logarithmically both at the puncture R0 = M and the horizon R = 2M .

This behavior is evident in Fig. 5.2, which also illustrates a hypothetical perturbation for

dynamical slices, the subjects of Ch. 5.
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Shock-Avoiding Slices

We now choose f(α) = 1 + κ/α2 (4.5). Alcubierre [54] proposed the resulting slices as

alternatives to 1 + log slices that avoid gauge shocks. For this choice, Eq. (4.22) becomes

α′ =
α2 + κ

αR

2− 3M/R +Q2/R2 − 2α2

1− 2M/R +Q2/R2 + κ
. (4.73)

As we discussed in Sec. (4.2), the denominator (4.23b) of the right-hand side of this

expression now vanishes for α = 0. For α = 0 the numerator (4.23a) has a root at the

critical radius

Rc = R0 =
3 +

√
9− 8λ2

4
M, (4.74)

where we have chosen the outermost solution. Of course, this critical point, coinciding

with the root of the lapse, may not be the only critical point through which α(R) passes.

It is possible that the denominator of the second factor on the right-hand side of Eq. (4.73)

vanishes at a radius R∗
c > Rc; setting this quadratic expression to zero, we compute

R∗
c =

1 +
√
1− λ2(1 + κ)

1 + κ
M, (4.75)

which we note is real only for κ ≤ λ−2 − 1. Substituting this alternative value into

Eq. (4.23a), we determine the corresponding critical lapse

α∗
c =

(
−1 +

√
1− λ2(κ+ 1)− λ2(κ+ 1)

)1/2 1√
2λ
. (4.76)

We observe that if κ satisfies

κ > 1− 3−
√
9− 8λ2

2λ2
(4.77)
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then no real solutions for α∗
c exist. We thus conclude that, in this case, the critical point

is given by Eq. (4.74) and αc = 0.

We assume from here that condition (4.77) holds for all αc = 0. As in [52], we may

evaluate the integral (4.14) to obtain

I(α) =
1

2
ln

(
α2 + κ

κ

)
, (4.78)

so that Eq. (4.15) becomes

α2 = 1− 2M

R
+
Q2

R2
+
α2 + κ

κ

C

R4
. (4.79)

Solving for the constant of integration yields

C = −R4
c

(
1− 2M

Rc

+
Q2

R2
c

)
; (4.80)

with Rc given by Eq. (4.74), we then have

C =M4

(
27

32
+

(9− 8λ2)
3/2

32
− 9λ2

8
+
λ4

4

)
. (4.81)

For Schwarzschild spacetimes, i.e. for λ = 0, we recover C = 33/24 as found by [52].

To evaluate the derivative a1, we apply L’Hôpital’s rule to Eq. (4.73):

lim
α→0

α′ = lim
α→0

(d/dR)((α2 + κ)(2− 3M/R +Q2/R2 − 2α2))

(d/dR)(αR(1− 2M/R +Q2/R2 + κ))

=
1

lim
α→0

α′
κ(4R0 − 3M)

(1 + κ)R3
0 − 2MR2

0 +Q2R0

. (4.82)

Now imposing α′ → a1 as α → 0, multiplying both sides by a1, and taking a positive root,

36



we obtain

a1 =

√
κ(4R0 − 3M)

(1 + κ)R3
0 − 2MR2

0 +Q2R0

. (4.83)

Then using Eq. (4.74), the exponent

1

γ
=

(
18 + 6

√
9− 8λ2 − 16λ2

9κ+ (3κ− 1)
√
9− 8λ2 + 4λ2(1− κ)− 3

)1/2√
κ, (4.84)

and we verify that we recover

1

γ
=

√
6κ

3κ− 1
(4.85)

for λ = 0 as in [52]. In the extremal case λ = 1, Eq. (4.84) reduces to 1/γ = 1

independently of κ, as expected from our discussion in Sec. 4.3.

Substituting Eq. (4.81) into Eq. (4.79), we obtain an analytical solution for the

lapse

α(R) =

(
32R4 − 64MR3 + 32Q2R2 + A

32κR4 − A

)1/2√
κ, (4.86)

where we abbreviate

A ≡ 27M4 +M4
(
9− 8λ2

)3/2 − 36M2Q2 + 8Q4. (4.87)

We use the above solution to transform to isotropic coordinates as discussed in Sec. 4.2

and show results for α(r) with κ = 1 in Fig. 4.3.
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Figure 4.3: The analytical profile of the lapse α(r) via Eq. (4.86) for λ ∈ {0, 0.4, 0.8, 0.999}
for shock-avoiding slices with κ = 1.

Zero Order Shock-Avoiding Slices

The shock-avoiding slicing condition given by Eq. (4.5) has the unusual property that

it allows the lapse to become negative. We thus also study slices that avoid shocks to

leading order only and do not allow α < 0 (see, e.g., [60, 61] for numerical applications).

These zero order shock-avoiding slices are given by f(α) = a20/(2α + (a0 − 2)α2) (4.6).

We note that 1 + log slicing (4.3) with k = 2 corresponds to Eq. (4.6) with a0 = 2.

As in [52] we can compute the integral (4.14) analytically, yielding

I(α) =
α

2a20
(4− (a0 − 2)α), (4.88)

and we may then evaluate the derivative of the lapse at its root,

a1 = a0
−2MR3

0 + 2Q2R2
0 + 4C

4CR0

; (4.89)
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however, expressions for the critical values, constant C, and root R0 are unwieldly, so we

compute these numerically. Then using these results we apply numerical root-finding to

Eq. (4.15), transform to the isotropic radius r numerically, and plot α(r) for a0 = 4/3 in

Fig. 4.4.

Figure 4.4: The numerical profile of the lapse α(r) for λ ∈ {0, 0.4, 0.8, 0.999} for zero
order-shock avoiding slices with a0 = 4/3.

Summary of Results

In Fig. 4.5 we compare our results for the critical lapse, constant of integration, and

exponent 1/γ as a function of the black-hole charge-to-mass ratio λ for the four slicing

conditions considered in this chapter. In Fig. 4.6 we plot values for the critical radii and

roots R0 of the lapse against λ for each of these conditions. In Figs. 4.7–4.10 we compare

profiles of the lapse α(r) for these slices with particular values of λ.
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Figure 4.5: The critical lapse αc (top), constant of integration C (center), and exponent
1/γ (bottom) plotted against the black-hole charge-to-mass ratio λ (up to 0.999) on a
shared horizontal axis for each of the f(α) we consider. The solid (blue) line corresponds
to 1 + log slices (with k = 2), the short-dashed (orange) line to analytical trumpet
slices, the long-dashed (green) line to fully shock-avoiding slices (with κ = 1), and the
dash-dotted (red) line to zero order shock-avoiding slices (with a0 = 4/3). All slices have
the same critical values in the extremal limit λ→ 1.
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Figure 4.6: The critical areal radius Rc (top) and the root R0 of the lapse (bottom) versus
λ for each of the f(α) we consider. The inset in the top-right corner of the bottom panel
shows an expanded view of the bottom-right region, where the root of the lapse for zero
order shock-avoiding slices falls slightly below R0 =M near the extremal limit λ→ 1.
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Figure 4.7: Profiles of the lapse α as a function of isotropic radius r for each of the slicing
conditions we consider (with k = 2, κ = 1, and a0 = 4/3) with charge-to-mass ratio λ = 0
(the Schwarzschild spacetime). See Fig. 4.1 for an explanation of the dotted lines.

Figure 4.8: Same as Fig. 4.7 but with λ = 0.400.
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Figure 4.9: Same as Fig. 4.7 but with λ = 0.800.

Figure 4.10: Same as Fig. 4.7 but with λ = 0.999.
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In general we observe that in the extremal limit λ → 1, all slices converge to a

unique slice that is independent of the choice of Bona-Massó function, as anticipated

in Sec. 4.3. The lapse for this unique extremal slice is given by that of the analytical

trumpet slices (4.65) of Sec. 4.3, which we derived without assuming λ = 1. We also

note that in the asymptotic limit r → ∞, i.e. toward Minkowski space, all lapse profiles

converge to unity as expected.

44



5 Dynamical Bona-Massó Slices

This chapter discusses the collaborative work of Li, Baumgarte, Dennison, and de Oliveira

(2023) [62] in additional detail.

5.1 Motivation

In Ch. 4 we computed properties of Bona-Massó slices of RN spacetimes in static equi-

librium, i.e. we studied the limiting characteristics of these slices in the spatial domain

as t→ ∞. However, in GR we are interested in how systems governed by the Einstein

equations (1.1) evolve over time, and therefore in numerical relativity we are interested in

how spacetime slices behave as they are evolved and not just the static equilibria to which

they eventually settle. In Ch. 4 we were motivated to study the shock-avoiding slices

given by Eq. (4.5) precisely because of their dynamical behavior, namely their avoidance of

gauge shocks that can arise over the course of time evolution in 1 + log slices. Baumgarte

and Hilditch (2022) [57] showed that, although shock-avoiding slices sometimes allow

the lapse to become negative, they exhibit stability and accuracy comparable to that of

1 + log slices in test simulations of black holes, neutron stars, and gravitational collapse.

One such test evolved a Schwarzschild black hole using the Bona-Massó slicing condition

(4.1) starting with a slice of constant Schwarzschild time. In Fig. 5.1, adapted from [57],

the lapse at the black-hole puncture is plotted against time for 1 + log slices (with k = 2)

and shock-avoiding slices (with κ = 1 and κ = 2/3). Whereas in Ch. 4 we use αc to

denote the critical lapse, in this chapter αc refers to the central lapse, i.e. at isotropic
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Figure 5.1: The central lapse αc at the black-hole puncture in the evolution of a single
Schwarzschild black hole with the Bona-Massó slicing condition (4.1). Adapted from
Fig. 2 of [57].

radius r = 0. For dynamical slices the central lapse may be nonzero during evolution;

in the limit t → ∞, however, αc settles to zero, and hence for static slices we identify

the location of the black-hole puncture with the root of the lapse. Here the black-hole

puncture corresponds simply to the center r = 0 of the isotropic coordinate system (see

Sec. 4.2); this coincides exactly with the root R0 of the lapse for static slices only.

As Fig. 5.1 makes apparent, the central lapse for shock-avoiding slices exhibits

both quantitative and qualitative differences in its behavior compared to αc for 1 + log

slices. Whereas for 1 + log slices the lapse appears to decay roughly exponentially after a

short period (∼ 8M), for shock-avoiding slices the lapse appears to undergo harmonic

oscillation. At early times (up to ∼ 150M) these oscillations appear damped, but at

later times, the amplitude remains mostly constant. We observe also that the period of

oscillations is larger for a smaller value of the constant κ in Eq. (4.5).
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We caution that neither the observation of exponential decay nor harmonic os-

cillation is exact. We also note that numerical error due to finite-differencing across

the black-hole puncture is large enough to prevent pointwise convergence. However, an

independent code based on a multidomian spectral method (see [63]) produced the same

qualitative behavior in αc as with the finite difference method, namely exponential decay

for 1 + log slices and harmonic oscillation for shock-avoiding slices, albeit with some

quantitative differences.

The observed exponential decay suggests a first-order ordinary differential equation

(ODE) governs αc for 1 + log slices, whereas the observed harmonic oscillation suggests

a second-order ODE governs αc for shock-avoiding slices. Since both the 1 + log and

shock-avoiding slicing conditions are imposed by the same equation, namely the Bona-

Massó condition (4.1), the origin of this qualitative contrast is mysterious. In this chapter

we seek analytical insight into what causes this difference in behavior. We employ a

dynamical height-function approach (see Ch. 3) to represent time-dependent coordinate

transformations of spacetimes whose metric1 takes the form (3.2) and explore the behavior

of the central lapse.

5.2 Methods

We study dynamical slices in the limit that they may be considered linear perturbations of

their static counterparts of Ch. 4. Since we expect the static height function to diverge at

the black-hole puncture and the outer horizon (see Sec. 4.3) and to asymptote to a finite

value toward spatial infinity, these perturbations require different treatments in different

regimes. As Fig. 5.2 illustrates, far from the black hole, where the slope h′0(R) of the static

“background” decreases monotonically, we may describe the dynamical slice in terms of a

perturbation η(t, R) of the height function h0(R) itself, i.e. h(t, R) = h0(R) + η(t, R). We

1Since the coefficient F (R) is kept general, this analysis works identically for RN and Schwarzschild
spacetimes.
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will recover well-known wave equations for the lapse in this limit. Close to the puncture,

however, h0 and its derivative diverge, so that changes in h may also diverge. In this

region it is more natural to describe the slice in terms of a small shift ρ(t, R) in the

radial coordinate R where we evaluate the background height function. We will use

this approach to arrive at our main result concerning the dynamical behavior beget by

different slicing conditions at the black-hole puncture.

Figure 5.2: Graph of the static height function h0(R) for the analytical trumpet slice
together with a hypothetical perturbation. The perturbation can be described by changes
η in h far from the puncture and changes ρ in R close to the static puncture at R0 =M .

Perturbations in the Far Limit

In the far limit R ≫M , where we assume h′0 → 0, we describe the perturbation as

h(t, R) = h0(R) + η(t, R). (5.1)
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Given our assumption h′0 ≪ 1, we may write ḣ = η̇ and h′ ≃ η′. Since F ≃ 1 also in this

regime, Eqs. (3.8), (3.6), and (3.11) give, to leading order in the perburbation η,

α ≃ 1− η̇, βR ≃ η′, and K ≃ η′′ +
2

R
η′ = ∇2η, (5.2)

where in the last equality we have recognized that the Laplacian in spherical symmetry is

∇2 =
1

R2
∂R
(
R2∂R

)
= ∂2R +

2

R
∂R.

Substituting these expressions into the Bona-Massó equation (4.1), we obtain a wave

equation for the pertubation η,

−η̈ + f(1)∇2η = 0, (5.3)

where f(1) denotes the Bona-Massó function f(α) evaluated at α = 1. By Eqs. (5.2),

taking a time derivative of Eq. (5.3) yields a wave equation for the lapse,

α̈− f(1)∇2α = 0. (5.4)

We thus conclude that in the far limit, dynamical perturbations in the lapse travel at

speeds v =
√
f(1)c, where we have written the speed of light c for clarity. For 1 + log

slicing given by Eq. (4.3) with k = 2, f(1) = 2; this confirms the well-known result that

gauge modes travel at a speed v =
√
2c. For shock-avoiding slices given by Eq. (4.5),

gauge modes travel at a speed v =
√
1 + κc (see, e.g., [54, 55]).2

2Recall that the above waves describe pure gauge modes, so that a wave speed v > c does not violate
causality.
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Perturbations at the Puncture

We now turn to perturbations close to the black-hole puncture. In this regime, where

h0 and its derivative diverge, a perturbative ansatz like Eq. (5.1) cannot represent a

perturbation like the one sketched in Fig. 5.2, i.e. one that shifts the puncture to a new

radial coordinate, with η <∞. Rather, we describe perturbations in the vicinity of the

puncture in terms of a dynamical radial perturbation ρ(t, R). In particular, we will equate

the perturbed height function h(t, R) with the static height function h0 evaluated at a

radius

R̃ = R + ρ(t, R) (5.5)

as sketched in Fig. 5.2, with ρ given by

h(t, R) = h0(R̃) = h0(R + ρ). (5.6)

Derivatives of h are then given by

ḣ(t, R) = h′0(R̃)ρ̇(t, R) and h′(t, R) = h′0(R̃)(1 + ρ′(t, R)). (5.7)

Substituting Eqs. (5.7) into Eqs. (3.4), (3.6), and (3.8), we obtain

γRR = F−1
(
1− F 2h′0

2
(1 + ρ′)

2
)

(5.8)

for the radial metric component,

βR =
F 2(1− h′0ρ̇)h

′
0(1 + ρ′)

1− F 2(h′0)
2(1 + ρ′)2

(5.9)
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for the radial shift component, and

α2 =
(1− h′0ρ̇)

2F

1− F 2h′0
2(1 + ρ′)2

(5.10)

for the lapse. We observe from Eq. (5.8) that γRR diverges where h′0(R̃) diverges.

Whereas for static slices, the divergence of h0 necessarily coincides with a root of the

lapse, this is not true in general for dynamical slices. However, even for dynamical slices,

we identify the black-hole puncture as the place where the spatial metric component γRR

diverges. According to Eq. (3.4), this coincides with a divergence of the height function h

at R < 2M . We may therefore identify the black-hole puncture with a divergence of h′0 at

R̃ = R0 as discussed in Sec. 3.2, except that it is now located at R = R0 − ρ. Evaluating

the lapse (5.10) at the puncture, i.e. in the limit h′0 → ∞, we obtain

α =
ρ̇√

−F (1 + ρ′)
, (5.11)

while the shift (5.9) becomes

βR =
ρ̇

1 + ρ′
. (5.12)

We now introduce the derivative along the normal vector

∂n ≡ αna∂a = ∂t − βR∂R, (5.13)

allowing us to rewrite Eqs. (5.11) and (5.12) in the more compact form

α = (−F )−1/2∂nρ and βR = ∂nρ. (5.14)

Unlike in the static case [see Eq. (3.12a)], the lapse does not necessarily vanish at the

puncture for time-dependent slices, as has been observed in many numerical simulations
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(see, e.g., Fig. 5.1).

We now evaluate the Bona-Massó condition (4.1) at the puncture. Substituting

the dynamical lapse (5.10) and shift (5.9) into Eq. (3.11) for the mean curvature and

evaluating the result at the puncture, where h′0 → ∞ and R̃ = R0, we obtain

K = −4F +RF ′

2R
√
−F

. (5.15)

In the above, the metric coefficient F and its derivative are evaluated at a radius R = R0−ρ.

For ρ≪ R0, we may expand about R̃ = R0 and rewrite (5.15) as

K(R) ≃ K(R0)− ρK ′(R0), (5.16)

where K ′ = dK/dR . Then using expressions (5.14) on the left-hand side, where F and

its derivative are evaluated at R = R0 − ρ also, the Bona-Massó equation becomes

∂n

(
(−F )−1/2∂nρ

)
= −α2f(α)(K(R0)− ρK ′(R0)) (5.17)

to linear order in the perturbation ρ, where we have not yet evaluated the term α2f(α).

We note that we can evaluate K(R0) = K0(R0) using Eq. (4.28) once we evaluate α2f(α).

Remarkably, all spatial derivatives of ρ other than those contained in the operators ∂n

disappear in the limit h′0 → ∞, resulting in an ordinary differential equation for ρ at the

puncture. In the next section we will see that the choice of f(α) determines whether

Eq. (5.17) is of first or second order, thereby changing the qualitative behavior of the

solutions.

52



5.3 Results

1 + log Slices

For almost all slicing conditions, the leading-order mean curvature term K(R0) on the

right-hand side of Eq. (5.17) is nonzero. One such condition is 1 + log slicing (4.3) with

k = 2, for which Eq. (5.17) becomes

∂n

(
(−F )−1/2∂nρ

)
= 2(−F )−1/2∂nρ(K(R0)− ρK ′(R0)) (5.18)

upon using Eq. (5.14) for α on the right-hand side. We now observe that, to leading order

in ρ, the term ρK ′(R0) on the right-hand side vanishes and with it the only appearance

of ρ itself (rather than its derivatives). To linear order in ρ, we may therefore replace the

term (−F )−1/2∂nρ with α to obtain a first-order equation for the lapse alone,

∂nα = −2αK(R0). (5.19)

This equation is identical to our starting point, Eq. (4.1), except that now, in the linear

limit, we assume the mean curvature K to take a positive and constant value. In this

case we may integrate to obtain

α(R) = Ce−2K(R0)t, (5.20)

where C is a constant of integration, demonstrating that to linear order we should expect

the central lapse of 1 + log slices to decay exponentially. As warned in Sec. 5.1, the

predictions of Eq. (5.20) differ quantitatively from the numerical data in Fig. 5.1. During

the time interval 10 ≲ tM−1 ≲ 15, when Fig. 5.1 suggests an approximately exponential

decay, the numerical data fall off more rapidly than predicted by Eq. (5.20). A rough fit to
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the numerical data suggests a time constant τ that is smaller than (2K(R0))
−1 by about

a factor of two. However, rather than staying constant, the mean curvature K changes

rapidly through this dynamical period as it transitions from its initial value of zero to

the equilibrium value K0(R0) ≈ 0.301. This suggests nonlinear terms are still important

during this time. At later times, numerical error becomes important; in particular, the

lapse settles down to a small but nonzero value that depends on the numerical resolution,

so that exponential decay can no longer be observed.

Shock-Avoiding Slices

For shock-avoiding slices, the unperturbed puncture is located at R0 = 3M/2 so that

the mean curvature K(R0) on the right-hand side of Eq. (5.17) vanishes. Inserting the

shock-avoiding condition (4.5) into Eq. (5.17), we now obtain

∂n

(
(−F )−1/2∂nρ

)
= κK ′(R0)ρ, (5.21)

where we have already neglected a term quadratic in ρ on the right-hand side. In contrast

to 1 + log slicing, the term proportional to ρ now dominates the right-hand side, so we

cannot rewrite this second-order equation as a first-order equation for α. We instead

expand to linear order in ρ to yield the harmonic oscillator equation

∂2nρ = −ω2ρ, (5.22)

where the angular frequency

ω = −
√
−FκK ′(R0). (5.23)
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In the uncharged case λ = 0, we have

ω

∣∣∣∣
λ=0

=
8κ

9M2
. (5.24)

Accordingly, for λ = 0 the central lapse αc performs harmonic oscillation with period

P

∣∣∣∣
λ=0

=
3πM√
2κ

. (5.25)

Note that we have assumed κ > 0 in the above equations, in agreement with our original

assumption in the shock-avoiding slicing condition (4.5).

As in Sec. 5.3, we attempt a quantitative comparison with the Schwarzschild

numerical data with some caution. Measuring the period of oscillation observed in the

shock-avoiding slices around 130 ≲ tM−1 ≲ 170, we obtain P1 ≈ 8M with κ = 1 and

P2/3 ≈ 11M with κ = 2/3 (even though the latter, in particular, shows some variation).

Evaluating the period (5.25), on the other hand, we predict P1 ≈ 6.7M and P2/3 ≈ 8.2M .

While we again encounter quantitative disagreement, we see that our analysis does explain

the origin of the observed harmonic oscillation and correctly predicts that the period

increases with decreasing κ.

We suspect that nonlinear terms cause the damping of the oscillations at early

times as seen in Fig. 5.1. Once the amplitude is small enough, however, the oscillations

should be governed by Eq. (5.22), which does not contain a damping term. Accordingly,

one would expect these oscillations to persist at a small amplitude, which is consistent

with the numerical data.

5.4 Summary

In this chapter we explored the origins of a qualitative contrast observed in simulations

of Schwarzschild black holes. The lapse at the black-hole puncture appears to decay
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approximately exponentially for 1+ log slices, whereas for shock-avoiding slices the central

lapse appears to undergo rough harmonic oscillation; this behavior is evident in Fig. 5.1.

We employ a dynamical height-function approach (see Ch. 3) to black-hole spacetimes

whose line element takes the form (3.2) in order to represent time-dependent coordinate

transitions. We then impose the Bona-Massó slicing condition (4.1) to construct trumpet

slices and consider small perturbations in a background trumpet solution at the black-hole

puncture. Describing these perturbations in terms of a small displacement ρ in the radial

coordinate of the puncture, the Bona-Massó equation becomes a second-order ODE (5.17)

for ρ in the normal derivative (5.13).

The primary difference between 1 + log and shock-avoiding slices then arises from

the behavior of the unperturbed mean curvature K(R0) evaluated at the puncture. For

1 + log slicing, K(R0) takes a positive value, causing ρ to drop out of the equation to

linear order. This results in a first-order equation that governs exponential decay. For

shock-avoiding slices, K(R0) vanishes, and the right-hand side of Eq. (5.17) becomes

dominated by ρ at linear order. The equation therefore remains a second-order ODE

for ρ, resulting in harmonic oscillation. We observe that the period of oscillation varies

inversely with the square root of the constant κ in Eq. (4.5).

While a quantitative comparison of our analytical predictions with the numerical

results of [57] shows some discrepancies as discussed in Sec. 5.1, we believe that these

can be explained in terms of nonlinear effects, numerical error at the black-hole puncture,

and our assumption that ρ′ remains finite, which may be restrictive. Despite these

discrepancies, our work provides analytical insight into the dynamical behavior of the

central lapse, points to the origin of qualitative differences between slicing conditions,

and predicts the dependence of decay constants and oscillation periods on the slicing

parameters.
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6 Conclusion

In this thesis we examine the geometry of spatial hypersurfaces, or slices, of spacetimes

of charged black holes. In particular, we study a set of coordinate gauge conditions

known as the Bona-Massó slicing conditions, given by Eq. (4.1). These PDEs relate the

lapse function α, shift vector βi, and mean curvature K and are parametrized by the

Bona-Massó function f(α) of the lapse. In Ch. 1 we motivate our analysis and introduce

the above geometric quantities. In Ch. 2 we discuss two exact solutions to Einstein’s

equations, namely the Schwarzschild and Reissner-Nordström spacetimes, representing

single, nonrotating, uncharged and charged black holes. In Ch. 3 we discuss the height-

function approach used to carry out transformations of the time coordinate and obtain

key results for both static and dynamical slices. In Ch. 4 we extend the analysis in [52] to

static Reissner-Nordström spacetimes by introducing the black-hole charge-to-mass ratio

λ ≡ Q/M . We compute properties of static 1 + log, analytical trumpet, shock-avoiding,

and zero order shock-avoiding slices (see Sec. 4.1) of RN spacetimes and conclude that,

in the extremal limit λ → 1, all slices converge to a unique slice independently of the

choice of Bona-Massó function. In Ch. 5 we study dynamical 1 + log and shock-avoiding

slices in an attempt to explain their qualitative behaviors observed in a recent numerical

simulation [57]. We begin by recovering well-known gauge modes in the Minkowski limit

R → ∞ using a perturbation η of the height function itself. We then employ a radial

perturbation ρ near the black-hole puncture to arrive at leading-order equations for the

central lapse αc that predict exponential decay and harmonic oscillation. These results
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agree with the observed behaviors qualitatively despite some quantitative disagreement

in the decay constants and periods of oscillation. Since the metric is written in terms of a

function F (R) that one may choose, the analysis in Ch. 5 applies to both Schwarzschild

and RN spacetimes.

Astronomers rely on the predictions of numerical relativity to interpret gravitational-

wave signals emitted by some of the most energetic processes in the Universe, such as

black-hole and neutron-star collisions. To simulate such processes on a computer long

enough to extract useful results, a numerical relativist needs to choose a suitable coordi-

nate gauge, or slicing condition. We can better understand the most successful of these

conditions by stepping back and taking slices of simple, analytically known spacetimes such

as single, stationary black holes. This has been done numerous times for Schwarzschild

spacetimes (e.g., [16]), but Reissner-Nordström spacetimes have received little attention

in this context since the black-hole charge is usually assumed to be negligible. However,

a number of authors [29–40] have recently assessed the role of the black-hole charge

and simulated the interactions of charged black holes. This thesis adds to that work by

providing insight into slicing conditions for RN spacetimes. Our results generalize those

of [52] to charged black holes and resolve a mystery regarding the dynamical behavior of

two useful slicing conditions.
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