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Identification of a pan-cancer oncogenic microRNA
superfamily anchored by a central core seed motif
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Li Ding3,4,5, Travis I. Zack6, Preethi H. Gunaratne7,8, David A. Wheeler8, Cristian Coarfa1 & Sean E. McGuire1,9

MicroRNAs modulate tumorigenesis through suppression of specific genes. As many tumour

types rely on overlapping oncogenic pathways, a core set of microRNAs may exist, which

consistently drives or suppresses tumorigenesis in many cancer types. Here we integrate The

Cancer Genome Atlas (TCGA) pan-cancer data set with a microRNA target atlas composed

of publicly available Argonaute Crosslinking Immunoprecipitation (AGO-CLIP) data to

identify pan-tumour microRNA drivers of cancer. Through this analysis, we show a

pan-cancer, coregulated oncogenic microRNA ‘superfamily’ consisting of the miR-17, miR-19,

miR-130, miR-93, miR-18, miR-455 and miR-210 seed families, which cotargets critical

tumour suppressors via a central GUGC core motif. We subsequently define mutations in

microRNA target sites using the AGO-CLIP microRNA target atlas and TCGA exome-

sequencing data. These combined analyses identify pan-cancer oncogenic cotargeting of the

phosphoinositide 3-kinase, TGFb and p53 pathways by the miR-17-19-130 superfamily

members.
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M
icroRNAs are single-stranded RNA molecules (B22
nucleotides) that repress messenger RNA translation1

and promote mRNA degradation2,3. MicroRNAs are
critical regulators of oncogenesis and their regulation of cancer
cell signalling is complex. Global microRNA expression is often
repressed in cancer4–7. However, some microRNAs are
oncogenic7–10, exhibiting amplified expression in many tumour
types.

Facilitated by Argonaute proteins, microRNAs bind target
mRNAs in the RNA-induced silencing complex. MicroRNA
target regulation is canonically mediated by nucleotides 2–8 on
the 50-end of the microRNA strand, termed the microRNA
seed11. A minimum of six consecutive nucleotides is required to
pair the microRNA with its target mRNA11,12. This minimal
binding requirement allows a given microRNA to potentially bind
tens, hundreds or thousands of mRNA targets13.

One difficulty in determining the functions of microRNAs in
tumours is the wide array of potential genes that any microRNA
might regulate. Established microRNA target prediction algo-
rithms are based on inference, relying on evolutionary conserva-
tion of 30-untranslated region (UTR) sequences complementary
to the microRNA seed and biochemical binding context to
determine putative microRNA binding sites14,15. Although these
algorithms are useful for predicting microRNA targets, especially
within the 30-UTRs, they are not experimental demonstrations of
microRNA–target interactions and are often less able to
accurately predict microRNA binding within protein-coding
regions and non-coding RNAs (ncRNAs) because of reliance on
site-specific conservation11.

Argonaute Crosslinking Immunoprecipitation (AGO-CLIP)
data sets experimentally identify microRNA–target interactions
in a genome-wide manner through purification of Argonaute-
protein-associated RNAs, which include bound microRNAs and
their respective targets16–18. In this study, to explore the
microRNA regulatory landscape across the TCGA Pan-Cancer
project19, which includes data from breast adenocarcinoma
(BRCA), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), uterine corpus endometrioid carcinoma,
glioblastoma multiforme (GBM), head and neck squamous cell
carcinoma (HNSC), colon and rectal carcinoma (COAD, READ),
bladder urothelial carcinoma (BLCA), kidney renal clear cell
carcinoma (KIRC), ovarian serous cystadenocarcinoma (OV),
uterine corpus endometrial carcinoma (UCEC), and acute
myeloid leukemia (LAML), we compiled all publicly available
human AGO-CLIP data17,18,20–24 into a single unified atlas and
ranked individual microRNA target sites by total occurrences
across data sets. We integrated this substantial atlas of microRNA
target sites with TCGA pan-cancer microRNA, mRNA, copy
number variation (CNV) and exome-sequencing data sets to
discover common microRNA regulatory architecture across
tumour types. Finally, we developed an algorithm, miSNP, to
infer somatic mutations in these regulatory binding sites. Our
analysis represents integration of a new resource, the AGO-CLIP
atlas, and TCGA data, creating a method by which we were able
to understand microRNA regulatory architectures across multiple
tumour types. Collectively, this study identified a pan-cancer
oncogenic microRNA (oncomiR) network that cotargets multiple
potent tumour suppressors (TS) through a common core seed
motif.

Results
Global microRNA expression patterns in normal and tumour
tissue. The TCGA pan-cancer data set represents the single
largest compilation of microRNA-sequencing data in cancer
produced to date. Global analysis of microRNA expression

patterns in 4,186 tumours and 334 normal tissue samples
revealed the top 30 microRNAs constitute, on average, B90% of
all microRNA expression across heterogeneous normal tissues.
The same 30 microRNAs likewise comprise 80–90% of
microRNA expression in tumours (Fig. 1a,b, Supplementary
Tables S1 and S2)

miR-143 is the single, most highly expressed microRNA in
normal tissue, and miR-21 is the most highly expressed
microRNA in cancer (Fig. 1b). MicroRNA expression patterns
undergo global population changes between cancer and normal,
primarily due to increased miR-21 expression (from 6.9 to 19% of
all microRNA detected) and decreased miR-143 expression (from
33 to 11.2% of detectable microRNA) across tumour types.

AGO-CLIP atlas identifies global microRNA binding events.
AGO-CLIP technology employs ultraviolet crosslinking of RNA
to protein followed by immunoprecipitation to determine
RNA species bound to the Argonaute protein (Fig. 2a). AGO
Photoactivatable-Ribonucleoside-Enhanced CLIP (AGO-PAR-
CLIP)17 includes an added step where nucleotide analogues
such as 4-thiouridine are introduced before crosslinking. These
nucleotide analogues, when crosslinked, undergo T–C transitions
during the reverse-transcription step of the AGO-CLIP
experiment17, allowing more confident visualization of RNA–
protein interaction (Fig. 2b).

We began by generating a large atlas of microRNA binding
sites by compiling publicly available AGO-CLIP data
(Supplementary Data 1)17,18,20–24. This included 11 AGO-PAR-
CLIP libraries and 3 unmodified AGO-CLIP libraries (also called
Argonaute High-Throughput Sequencing of RNA Isolated by
CLIP (AGO-HITS-CLIP))16. The AGO-CLIP atlas allowed
us to integrate experimentally defined microRNA–target inter-
actions with TCGA data to create the most accurate prediction
of microRNA binding patterns across TCGA cancers. The AGO-
CLIP seed atlas consists of 124,000 microRNA target clusters
that subsequently infer over 300,000 putative seed motifs within
those clusters. Individual seed sites were used as genomic
anchors to tabulate recurrent definition of a given seed across
14 AGO-CLIP data sets (Fig. 2c, Supplementary Data 1). Clusters
were then randomly permuted across the genome to determine
an exact binomial probability of cluster occurrence at a given seed
complement. False discovery rates (FDRs) for each seed-
complementary target were calculated from their probability
of recurrence (Supplementary Data 1–3). We found that Z3
occurrences of an AGO-CLIP peak on a given target site
corresponded to a significant event relative to a random
distribution of clusters (qo0.05 based on binomial P-value,
Supplementary Data 3). AGO-CLIP defined that cluster
localization by mRNA region is largely consistent with previous
reports16,17, with 60% of clusters mapping to the 30-UTR, 24.7%
of clusters mapping to the coding region, 8.2% mapping to
the 50-UTR and 7% mapping to ncRNAs (Fig. 2d).

DICER1, MDM2 and the long ncRNA (lncRNA) Xist are
among the top ten, most frequently targeted genes in the atlas,
suggesting that the microRNA functional roles may include
autoregulation, apoptotic sensitization through TP53 and lncRNA
function (Supplementary Data 2). Importantly, traditional
target prediction algorithms do not predict the high-frequency
interactions on both MDM2 and Xist, demonstrating the
strength of the unbiased AGO-CLIP platform. We also found
numerous interactions between the Argonaute proteins and
lncRNAs, small nucleolar RNAs and transfer RNAs in the AGO-
CLIP atlas. These findings are consistent with recent evidence,
suggesting that ncRNAs are microRNA targets or Argonaute
binding substrates25. Discovery of these interactions supports a
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growing consensus that microRNA function extends beyond the
regulation of protein-coding genes.

Analysis of TCGA microRNA expression data. To define which
microRNAs consistently change relative to matched normal tis-
sue, we performed significance testing on tumour versus normal
microRNA expression levels across samples. Inspection of the
TCGA microRNA data set revealed that significance testing
(Fisher’s exact test) between tumour and normal samples on the
raw reads per million values generated by high-level processed
TCGA data produced significantly more increased microRNAs
than decreased microRNAs (Supplementary Fig. S1A). The

reason for this differential significance level between increased
and decreased microRNAs is due to loss of highly expressed
microRNAs in tumour samples, especially loss of miR-143, which
accounts for 35–70% of microRNA expression in normal tissue.
miR-143 expression often decreases by 450% in tumours
(Fig. 1b). As microRNA expression in sequenced samples is
expressed as a population value (reads per million microRNAs
mapped), and because total RNA between tumour and normal
samples used in sequencing experiments is constant, the loss of
miR-143 leads to reciprocal gains in the proportion of other
microRNAs. This relationship is demonstrated by the strong
association of the absolute number of significantly increased
microRNAs and the loss of miR-143 (R2¼ � 0.86, P¼ 0.01,
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Figure 1 | The landscape of microRNA expression in the TCGA pan-cancer data set. (a) Thirty microRNAs constitute 90% of microRNA expression

across all normal tissues. (b) Global microRNA expression change occurring in tumours is due principally to loss of miR-143 expression and gain

of miR-21 expression. MicroRNAs represented in columns from bottom to top listed left to right by row legend.
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Supplementary Fig. S1B). We corrected for these composition
differences using upper quartile and trimmed median of M-values
to normalize the data set26. These methods are designed to
compensate for differences between tissues (for example,
comparing the liver and the kidney) and are thus useful when
comparing tumour versus normal tissue microRNA values, because
they compensate for artefact generated by large expression changes
in the most prevalent microRNAs (Supplementary Fig. S1A–D;
Supplementary Data 4 contains detailed significance calculations
for microRNAs in all tumour types).

Definition of microRNA–target interactions. We next defined
pan-cancer oncomiRs and miR suppressors (tumour-suppressing
microRNAs) based on consistent expression changes across
cancer types. Pan-cancer oncomiRs were defined by significant
expression gain (qo0.05, Fisher’s exact test) in at least six out of
seven pan-cancer tumour types containing tumour versus normal
microRNA-sequencing data. Pan-cancer miR suppressors were
similarly defined by significant expression loss in at least six of
seven tumour types (Fig. 3a; Supplementary Data 5 contains
detailed pan-cancer microRNA selection data). To ensure we
were observing target interactions with highly expressed micro-
RNAs that had many conserved target sites in the 30-UTR, we
focused on the dominant arms of the 87 broadly conserved
microRNA families with an Argonaute-bound read group cor-
responding to the microRNA in at least 3 of the 14 AGO-CLIP
data sets in our analysis.

We examined interactions between putative pan-cancer
oncomiRs or miR suppressors, and their driver targets, based
on the assumption that pan-cancer oncomiRs are enriched for
TS targets and pan-cancer miR suppressors are enriched
for oncogenic targets. We then performed integrative analysis

of pan-cancer TS and oncogenes (OCs) by using available
pan-cancer data, including exome-sequencing single-nucleotide
variation (SNV) scores (MuSiC27,28 and MSKCC29 algorithms),
CNV analysis (GISTIC30,31 algorithm) and mRNA expression
changes as building blocks for integrated gene nomination
(Fig. 3b). We generated a continuous scale of relevant pan-
cancer genes that describes putative TS as increasingly negative
values and putative OCs as increasingly positive values, based on
SNV, CNV and mRNA expression changes across TCGA tumour
types (Supplementary Data 6 and Methods).

We tested four methods for calling microRNA–target inter-
actions including the following: using all AGO-CLIP-defined
binding sites without considering site conservation (for example,
TargetScan); using only AGO-CLIP-defined sites with Z3
occurrences (corresponding to a significant peak based on
random permutation) without considering TargetScan; using
TargetScan-only binding sites (without considering AGO-CLIP
data); and, finally, combining AGO-CLIP-defined target sites
with Z3 occurrences, or Z1 occurrences and a TargetScan call.
We found that combining AGO-CLIP and TargetScan results
(final method) was the only method that produced enrichments
of TS targets for pan-cancer oncomiRs and OC targets for pan-
cancer miR suppressors (Fig. 3c, Supplementary Fig. S2A–D).

To gain insight into the differing enrichments, we explored
the target spectrums of AGO-CLIP-defined target sites and
TargetScan-defined target sites for the selected pan-cancer
microRNAs. We found that on average 25.6% of TargetScan
targets are also nominated by AGO-CLIP. Reciprocally, Target-
Scan also nominates 31.47% of AGO-CLIP targets. In total, 74.4%
of all TargetScan targets were not called by AGO-CLIP, and
TargetScan did not call 68.53% of AGO-CLIP targets. In the
case of AGO-CLIP, 34.61% of all targets were outside the
30-UTR (coding region or 50-UTR), leaving another 34.39% of all
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AGO-CLIP-defined targets within the 30-UTR but not called by
TargetScan (results are summarized in Supplementary Table S3).

Calling interactions using the AGO-CLIP atlas alone produced
bias towards enrichment of OCs (Supplementary Fig. S2A,B),
whereas TargetScan alone produced bias towards TS
(Supplementary Fig. S2C). The AGO-CLIP data set produces
slight bias towards OCs, because the top 3,000 OCs have 31%
more AGO-CLIP clusters binding them than the top 3,000 TS.
This observation may reflect overexpression of these OCs in the
cell lines used to perform the AGO-CLIP analyses, or it may
reflect greater microRNA binding of OCs in general, which is
consistent with the tumour-suppressive function of many
microRNAs4–7. Notably, most of the targeting discrepancy
between TS and OCs is due to microRNA binding in the
coding region, with OCs having 66% more AGO-CLIP clusters
than TS (Supplementary Fig. S3A). TargetScan cannot predict
microRNA binding in coding regions of genes.

TargetScan may produce bias towards TS, because the top
3,000 TS have 40% larger 30-UTR lengths than the top 3,000 OCs
(Supplementary Fig. S3B). The relative size of the 30-UTR directly

determines the total number of predicted microRNA target sites
associated with that 30-UTR, suggesting that TS undergo greater
30-UTR-mediated cis-regulation in general. As many cell lines are
rapidly growing or are oncogenic, the relative lack of AGO-CLIP
clusters on the TS may reflect the cellular context of the AGO-
CLIP experiments wherein these genes could have reduced
expression owing to culturing conditions, rather than represent-
ing a general phenomenon.

Ultimately, determining microRNA–target interactions using
AGO-CLIP-defined target sites with Z3 occurrences, or Z1
occurrences, and a TargetScan call was the only method to
generate expected enrichments in TS targets for oncomiRs and
OC targets for miR suppressors. This method had the added
utility of combining target site conservation with genomic
experimental validation. Discovering expected enrichments when
combining TargetScan and AGO-CLIP values may suggest that
combined microRNA target calling yields improved accuracy
over a single method by reducing the false negatives and false
positives inherent in each technology. As such, we chose to define
a microRNA–target interaction as Z3 AGO-CLIP-defined
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occurrences, or Z1 occurrences, and a TargetScan for subsequent
analysis of tumour-driving microRNA–target interactions.

Identification of a pan-cancer oncomiR network. We observed
that the strongest overall microRNA–target enrichment was for
oncomiRs targeting the top 250 ranking TS (Fig. 3c, red box).
Many of these interactions involved cotargeting of multiple
microRNAs on the same TS. As many top TS targets were
cotargeted by the pan-cancer oncomiRs, we analysed seed
sequences of pan-cancer oncomiRs to determine whether any
core sequences were common to the individual oncomiR seeds.
Intriguingly, 10 of 22 (45.4%, Fig. 4a) pan-cancer oncomiRs in
our analysis share similar sequence homology in their seed region
that aligns around a central GUGC motif defining a microRNA
seed ‘superfamily’. GUGC motifs occur in 36 of 187 (ref. 13)
microRNAs from broadly conserved seed families (5.19%),
enriching seed families with a GUGC motif in their seed region
8.7-fold among pan-cancer oncomiRs compared with all broadly
conserved microRNAs (P¼ 0.008, Wilcoxon rank-sum test,
Fig. 4a). None of the 25 pan-tumour miR suppressors identified
in our analysis contain a GUGC motif, making this motif sig-
nificantly depleted among the identified miR suppressors
(P¼ 0.016, Wilcoxon rank-sum test). This motif is also enriched
when including all microRNAs meeting our significance thresh-
old, and not just the microRNAs from broadly conserved families
(P¼ 5E� 10, Wilcoxon rank-sum test; the GUGC motif is pre-
sent in 4.6% of all dominant-arm miRbase microRNAs and 26%
of all microRNAs significantly increased in 6/7 TCGA tumours).

Several superfamily microRNAs (miR-17/106a, miR-210, miR-
130b/301ab and miR-93/105) derive from the same seed family
(Fig. 4a). The miR-93/105 and miR-17/106a seed families have
virtually the same seeds, leading to highly similar predicted target
spectrums. miR-17, miR-106a, miR-18a and miR-19a are part of
the well-described miR-17B92 oncogenic cluster, also known as
oncomiR-1 (refs 9,10,32). MicroRNA seed similarity in the pan-
cancer oncomiRs led us to hypothesize that these microRNAs
may undergo coordinate regulation to mutually cotarget and
suppress critical TS.

To test this hypothesis, we defined the target spectrum of the
pan-cancer microRNA superfamily (Fig. 4b,c). We observed
oncogenic microRNA superfamily cotargeting of high-ranking
pan-cancer TS such as SMAD4, ZBTB4 and TGFBR2, often at a
single complementary seed-target site we termed a microRNA
‘super-seed’ target, where multiple families of microRNAs bind
and regulate a specific 30-UTR (Fig. 4b). In most superfamily
oncomiRs, the majority of targets predicted in the top 3,000 TS
are shared with at least one other superfamily member, including
70.2% of miR-19 targets, 79.3% of miR-130/301ab targets, 39.2%
of miR-17/106a/93 targets, 42.3% of miR-18a targets, 75.7%
miR-455 targets and 62.5% of miR-210 targets (Fig. 4c).

The entire miR-17-19-130-93-455-18-210 superfamily of pan-
tumour oncomiRs identified in this analysis forms three separate
super-seed target sites; one consisting of the miR-17, miR-19 and
miR-130 families, one consisting of the miR-18 and miR-19
families, and one consisting of the miR-19 and miR-455 families
(Fig. 4b). The miR-17, miR-19 and miR-130 seed families
exhibited the majority of total TS cotargeting on high-ranking TS
in our data set. We thus focused further studies on tumour
regulation by this subset of oncomiRs.

To test possible coregulation of the miR-17, miR-19 and
miR-130 families, we correlated the expression levels of family
members across TCGA tumours and found strong positive
correlation of these microRNAs (average miR-17-19-130 family
member microRNA–microRNA correlate across 11 tumour types,
R2¼ 0.33, Po1E� 200 versus null distribution, Student’s t-test,

Fig. 4d). These data suggest that the miR-17-19-130 superfamily
members undergo coordinate regulation in tumours to mediate
silencing of TS genes in a synergistic manner.

To demonstrate the potential for cotargeting of TS by the miR-
17-19-130 superfamily members, we determined pan-cancer
correlates for all microRNA–target interactions in the top 250-
ranked TS. Pan-cancer correlation of high-ranking TS targeted by
the miR-17-19-130 superfamily revealed strong negative correla-
tion of the superfamily with many pan-cancer TS, including
PTEN, ZBTB4 and TGFBR2, across all tumour types. Figure 5a
demonstrates correlations with the top four highest-ranked TS
(PTEN, TGFBR2, ZBTB4 and SMAD4) that are targeted by all
three seed families. PTEN, TGFBR2 and ZBTB4, all significantly
negatively correlated with the miR-17-19-130 family members
versus a null distribution of random microRNA–mRNA
correlates (Po1E� 15 for each, Student’s t-test). SMAD4
positively correlates with the superfamily in BLCA (Po1E� 10,
Student’s t-test), but otherwise shows no significant correlation,
potentially suggesting a role for the microRNAs in translational
repression of this target. Full correlate heat map for the
microRNA–target pairs in the top 250 TS versus all pan-cancer
oncomiRs is provided in Supplementary Data 7, a complementary
heat map for targets of pan-cancer miR suppressors paired with
the top 250 OCs is contained in Supplementary Data 8.

Next, we determined the ability of the miR-17-19-130 family to
suppress translation of the top cotargeted TS, PTEN, ZBTB4,
TGFBR2 and SMAD4 using 30-UTR–luciferase fusions. We used
miR-17, -19a and -130b as representative members of each seed
family. We found cosuppressive capacity by pan-cancer onco-
miRs on all four pan-cancer TS (Fig. 5b,c). In the case of ZBTB4,
PTEN and SMAD4, all miR-17-19-130 superfamily members were
able to bind to the 30-UTR and significantly repress luciferase
activity. miR-19a did not significantly suppress the TGFBR2
30-UTR (Fig. 5b).

The SMAD4 gene contains a single miR-17-19-130 super-seed
site that is highly conserved and few potential compensatory sites
able to bind the miR-17, -19 or -130 seeds. As such, we deleted
the central six nucleotides of the SMAD4 super-seed and
measured strong ablation of each microRNA seed family’s ability
to bind and regulate the SMAD4 30-UTR (Fig. 5c). This finding
illustrates the ability of a single 30-UTR binding site to undergo
coregulation by multiple microRNA families at a microRNA
‘super-seed’ target site.

PTEN is a conserved TS that regulates the oncogenic phos-
phoinositide 3-kinase pathway33. TGFBR2 and SMAD4 are
tumour-suppressive components of the transforming growth
factor-b (TGFb) pathway34. ZBTB4 is described as a mediator of
the p53 response35. Thus, the sum of this analysis suggests that the
pan-cancer oncomiR superfamily consisting of miR-17, miR-19
and miR-130 seed families coordinately target multiple critical
tumour-suppressing pathways across tumour types (modelled in
Fig. 7). We focused our analysis on the highest-ranking TS targets
defined in an unbiased pan-cancer analysis of microRNA–target
interactions in this study. Many of the described interactions have
been defined previously9,36–38. However, this study defines these
pathway targets as significant across multiple tumour contexts,
based on an unbiased estimation of microRNA–target interactions
in the largest single data set of human tumours produced to
date. Hundreds of potential, novel interactions between these
microRNAs and other targets are defined in Supplementary Data 7.

The AGO-CLIP atlas reveals mutations in microRNA targets.
To define additional novel mechanisms of microRNA regulation
in tumours, we next integrated the AGO-CLIP data set with
TCGA mutation data to identify somatic SNVs in microRNA
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target sites across tumours. SNV analysis commonly involves
identification of relevant coding-region somatic mutations
through predicted functional impacts of amino acid changes
associated with the nucleotide variations27,39. This process, however,

remains imperfect. Many missense mutations are not characterized
as contributing significant functional impact on a gene.
Further, large percentages of coding region mutations are silent.
Finally, the number of mutations outside the coding region of genes
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Figure 5 | The miR-17-19-130 pan-cancer oncomiR superfamily binds and suppresses potent pan-cancer suppressor genes. (a) miR-17-19-130

microRNA–mRNA target correlations across tumours reveals strong negative correlation between superfamily members and their top ranked TS targets

TGFBR2, PTEN and ZBTB4, but not SMAD4. (b) The miR-17-19-130 superfamily is able to coordinately bind and suppress expression of TS 30-UTR–luciferase

reporter constructs, indicating powerful interaction potential. (c) Superfamily cotargeting on the SMAD4 30-UTR occurs at a novel microRNA

super-seed locus where multiple microRNA seed families can bind, allowing for potential binding of more than individual microRNAs. Mix, an equimolar

mixture of miR-17, -19a and -130b to demonstrate the co-repressive capacity of the oncomiR superfamily as it would exist in the cellular context. *Po0.05,

**Po0.005, ***Po0.0005, Student’s t-test. Luciferase assays were performed twice at 5 nM mimic and twice at 10 nM in quadruplicate. Results were

combined for final analysis (n¼ 16). Error bars are s.e.m. microRNA–mRNA correlate n-values are as follows: BLCA¼ 95, BRCA¼ 794, COAD¼ 177,

HNSC¼ 301, KIRC¼466, LAML¼ 173, LUAD¼ 313, LUSC¼ 193, ovarian carcinoma (OV)¼ 225, READ¼65 and uterine corpus endometrioid carcinoma

(UCEC)¼ 320. These numbers reflect the total number of TCGA tumour samples that are characterized with both mRNA and microRNA sequencing.
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in regulatory regions (50-UTR and 30-UTR) outnumbers coding-
region mutations. In our analysis of COAD whole-genome
sequencing (WGS) samples, 60% of mutations in coding mRNAs
are in the 30-UTR, highlighting the potential importance of
mutations in these regions (Fig. 6a).

As disruption of microRNA target sites complementary to the
microRNA seed region directly interferes with microRNA
binding40, any mutation in the microRNA target site comple-
mentary to the microRNA’s seed is likely to attenuate microRNA
control of that site. As such, analysing mutations intersecting
with microRNA seed-complementary sites has the potential to
greatly expand the search for relevant cancer mutations by
imbuing silent mutations and 30-UTR mutations with functional
significance.

To perform microRNA seed-target mutation analysis, we
developed the miSNP algorithm to integrate AGO-CLIP data
with TCGA-defined cancer mutations. miSNP intersects micro-
RNA seed targets with mutation data and retrieves mRNA
expression changes corresponding to mutations in these active
sites (Fig. 6b), providing a powerful method to examine inter-
actions between features and search for subsequent changes in
mRNA associated with the interaction. Using the miSNP
algorithm, we defined thousands of putative microRNA target-
site mutations (Supplementary Data 9). The majority of
TCGA pan-cancer SNV data derives from exome sequencing
focused solely on coding-region sites. Therefore, the majority of
microRNA target mutations we define from the 12 pan-cancer
tumours occur specifically in the coding region. Importantly, it is
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only because we utilize the AGO-CLIP technology that we are
able to define these microRNA target-site mutations at all. In
addition, KIRC exome sequencing has a small number of 30-UTR
mutations annotated and we incorporated 36 COAD WGS
samples that contain full 30-UTR SNV annotations.

To demonstrate the ability of the AGO-CLIP technology and
the miSNP algorithm to detect relevant microRNA target-site
mutations, we selected six binding site mutations for experi-
mental validation (Supplementary Data 10). These sites were
chosen based on the number of times the specific binding site was
identified in the AGO-CLIP atlas, the location of the seed in the
coding region or 30-UTR, whether TargetScan called the site as
highly conserved and the relative location of the mutation within
the seed-complementary region of the binding site. This selection
included three mutations in 30-UTR sequences and three
mutations in coding sequences to capture the diversity of the
miSNP analysis (Supplementary Data 10). Four of six tested
microRNA binding sites with corresponding somatic mutations
demonstrated strong evidence of microRNA binding and
regulation of the selected site, silencing luciferase expression by
440% in each case and strongly suggesting our analysis identifies
functional microRNA binding sites (Fig. 6c).

For the four target sites with validated target repression, we
reproduced the endogenous tumour mutation in the 30-UTR–
luciferase construct. The binding site SNVs corresponding to the
miR-17 seed on the SKIL 30-UTR and the miR-9 seeds on the
HIST1H3B 30-UTR were able to ablate microRNA binding.
Mutations complementary to the Let-7 seed on ANP32E and
miR-142 seed on FAM114A1 variably reduced, but did not ablate,
the repressive ability of the microRNA on the luciferase reporter
(Fig. 6c). The ability of a mutation to ablate microRNA binding
was directly related to the relative position of the mutation within
the region complementary to the microRNA seed. Mutations in
the first or last nucleotide of the seed complement had a reduced
ability to ablate binding relative to mutations near the centre
of the seed complement (Fig. 6d). These observations are
consistent with established concepts of microRNA binding40

and demonstrate the ability to tier the probable functional impact

of microRNA binding site mutations based on its location within
the seed-complementary region of the mRNA target.

One microRNA target site mutation validated in our study was
a deletion of a miR-17 seed family binding site in the SKI-like OC
(SKIL/SnoN) 30-UTR. SKIL is a known OC and was ranked
in the top 7% of pan-cancer OCs in our pan-cancer mRNA driver
index due to expression gain and copy number amplification
(Supplementary Data 6). SKIL oncogenic function is known to
occur through direct repression of the TGFb signalling pathway,
and part of the TGFb signalling pathway activation involves
targeting and degradation of the SKIL protein41–43.

Targeting of the SKIL-30-UTR by the miR-17 seed family
reveals potential autoregulatory feedback that can attenuate
silencing of the TGFb pathway by the miR-17-19-130 superfamily.
Mutation of the miR-17 seed-family binding site on the SKIL
30-UTR may represent a mechanism to allow escape from this
feedback regulation, allowing unregulated SKIL expression while
simultaneously enhancing the oncogenicity of the miR-17 seed
family and creating enhanced suppression of the TGFb pathway
(Fig. 7). The miR-17 seed-family binding site on the SKIL 30-UTR
is identified in 8 out of 14 AGO-CLIP data sets, indicating
that the site itself is highly active endogenously. Despite this
strong evidence of microRNA binding in the AGO-CLIP atlas,
TargetScan, Pictar and MiRanda, motif calling algorithms13,14,44,45

do not nominate SKIL as a potential target of the miR-17 family,
again highlighting the value of unbiased genome-wide binding
assays as a useful method of determining active microRNA seeds.

Discussion
Combinatorial definition of high-confidence microRNA binding
sites using multiple transcriptome-wide AGO-CLIP data sets
generated clear evidence of endogenous microRNA binding at
specific locations on an mRNA strand. Points of microRNA
interaction tested in this study included multiple microRNA
binding sites, such as the miR-17-SKIL binding site and binding
sites in coding sequences of the mRNA, that are difficult to detect
through other means of microRNA target site prediction.

We found that 45% of broadly conserved pan-cancer oncomiRs
share strong homology in their seed motifs. Seed similarity leads
to redundant cotargeting, and therapeutic suppression of any one
of these microRNAs is likely to face compensation from other
members of the superfamily. The 30-UTR–luciferase binding
assays and anticorrelates of microRNA–target pairs support the
possibility that these microRNAs redundantly cotarget important
TS across multiple tumour types.

The ability of super-seed target sites to bind multiple members
of the oncogenic superfamily make them an attractive therapeutic
candidate in the future, because it may effectively act as a
microRNA ‘sponge’46 that can bind and titrate off multiple
superfamily members to restore normal cellular regulation in
cancer cells by de-repressing critical TS. This therapy may prove
more effective than targeting a single oncomiR family, because it
has the potential to concurrently sequester multiple oncogenic
microRNA seed families to disrupt redundant oncogenic
co-repression of TS.

Using the miSNP algorithm, we identified thousands of
mutations in microRNA binding sites. These mutations were
discovered in the exome-sequencing-defined coding-region
mutations available from the Pan-Cancer project, a small number
of 30-UTR mutations available from KIRC exome sequencing and
whole-genome 30-UTR mutations from 36 COAD WGS samples.
AGO-CLIP characterization of microRNA binding in additional
tissue types and integration of additional 30-UTR mutations from
broader cohorts of WGS samples will improve the yield of
relevant microRNA target site mutations in the future.
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Figure 7 | A model of Pan-cancer suppressor pathway regulation by

miR-17-19-130 superfamily as defined by AGO-CLIP analysis. The

microRNA-17-19-130 superfamily heavily targets critical TS in multiple

pathways, including the TGFb pathway, the phosphoinositide 3-kinase/AKT

pathway and the P53 pathway. Additional target site mutation analysis

reveals ablation of a miR-17-mediated negative feedback loop through

mutation of the miR-17 binding site on the SKIL OC 30-UTR, demonstrating

a novel mechanism of tumour escape from microRNA regulation.
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In conclusion, we generated a novel resource, the AGO-CLIP
atlas, to integrate experimentally defined microRNA binding sites
with TCGA tumour data, creating a new method and framework
to understand microRNA regulation of cancer. This method
addresses the difficult question of determining accurate genome-
wide microRNA–target interactions. Integration of the AGO-
CLIP-defined microRNA-binding data with TCGA tumour data
revealed several novel insights into microRNA regulation of
human tumours, including the definition of a pan-cancer
oncomiR superfamily and genome-wide identification of micro-
RNA-binding site mutations.

Methods
Argonaute Crosslinking Immunoprecipitation. AGO-CLIP sequence read
archive (SRR) files corresponding to all publicly available human AGO-CLIP
experiments were downloaded from the NIH sequence read archive (SRR codes:
SRR048973, SRR048974, SRR048975, SRR048976, SRR048977, SRR048978,
SRR048979, SRR048980, SRR048981, SRR359787, SRR189786, SRR189787,
SRR189784, SRR189785, SRR189782, SRR189783, SRR580362, SRR580363,
SRR580352, SRR580353, SRR580354, SRR580355, SRR580359, SRR580360,
SRR580361, SRR580356, SRR580357, SRR343336, SRR343337, SRR343334,
SRR343335, SRR592689, SRR592688, SRR592687, SRR592686, SRR592685; data
were downloaded on 11 January 2013). Files were individually pre-processed using
Fastx toolkit and cut-adapt to remove adaptor sequences and control for sequence
quality. Data set quality was individually discerned using Fast QC reader. Indivi-
dual sequencing runs were tiered and grouped, based first on group publishing, on
cell line used, then on individual treatment and finally based on total reads. In this
manner, 14 independent AGO-CLIP data sets were defined (summarized in
Supplementary Data 1). Individual cell lines with correspondent AGO-CLIP
data include: 293T (4/14 experiments), hESC (1/14 experiments), BCBL1
(1/14 experiments), BC-3 (2/14 experiments), BC-1 (1/14 experiments), LCL35
(1/14 experiments), LCL-BAC (1/14 experiments), LCL-BAC-EBV-infected (2/14
experiments) and EF3D (1/14 experiments). Eleven of these data sets were AGO-
PAR-CLIP experiments. Three were AGO-HITS-CLIP experiments. Reads from
both experiment types were mapped to hg19 using established Bowtie
parameters47.

Both HITS-CLIP and PAR-CLIP methods utilize ultraviolet crosslinking of
RNA-binding proteins to their respective RNA partners, followed by protein
immunoprecipitation and high-throughput sequencing of the bound RNA.
The difference between the two methods lies in the use of photoactivatable
ribonucleoside analogues in PAR-CLIP data sets, which allow experimental
determination of physical interlinkage between protein–RNA pairs through a
mismatch repair defect initialized at crosslinked nucleoside analogues during
complementary DNA synthesis, leading to T-C transitions in the generated
cDNA. Of the two, the majority of human data sets are PAR-CLIP generated, and
an established pipeline exists for processing of these data forms48. This pipeline
algorithm, termed PARalyzer, uses a kernel-density algorithm centred on crosslinks
to generate putative microRNA target sites. In the PARalyzer algorithm, reads are
first processed into read groups based on total number of reads. T-C transitions
in read groups are then used to define clusters based on the kernel-density
algorithm. Cluster sequences then undergo motif analysis for complements of
microRNA seeds to infer the identity of the microRNA binding partner. PAR-CLIP
Bowtie files were processed through the PARalyzer47 algorithm to generate clusters
and seeds using established parameters47.

AGO-HITS-CLIP Bowtie files were also processed through PARalyzer and
group data were isolated. AGO-HITS-CLIP data groups were superimposed over
microRNA target sites identified by the PAR-CLIP reads. In this way, AGO-CLIP
data sets were allowed to support the strength of a target site identified in the PAR-
CLIP runs by contributing to site recurrence, but were not allowed to perform
de novo target site identification. Meta-analyses concerning the location of clusters
and their density on various segments of the transcriptome (30-UTR, coding
sequence and 50-UTR) were performed using only the 11 AGO-PAR-CLIP
libraries.

A lenient seed inference strategy was used, which included all miRBase seed
families. The purpose of this lenient mapping was to anchor redundant read
clusters to the genome to determine seed-site recurrence across all data sets. Using
this strategy, 99% of 123,752 PAR-CLIP clusters mapping to the UCSC known
gene transcriptome received at least one seed inference, although likely to be at the
expense of false positives in less-expressed microRNAs. From these cluster
sequences, 306,733 microRNA seed-complementary sequences were inferred.
Multiple seed complements may be inferred from a single cluster sequence and
these seeds often overlap a single site. These sites often highlight putative
microRNA super-seed targets, which are readily apparent in AGO-CLIP data. The
identity of the actual binding partner may be one of the complementary
microRNAs, all of them, or may represent a form of non-canonical binding that is
not currently considered in our motif analysis25,48.

Following target identification, the seed complements of each target were
grouped for recurrence across the 11 PAR-CLIP data sets. To this, 3 HITS-CLIP

read groups were intersected to combine data from 14 total AGO-CLIP sources.
PAR-CLIP clusters and HITS-CLIP groups were then permutated across the
genome 20 times using BedTools49 and analysis was performed to determine
the likelihood of a given target being recurrently identified by chance after
randomization. A FDR was assigned based on binomial P-values established from
the actual measured probability of a seed-complementary site recurring at
random based on random distribution of the target sites across the transcriptome.
We determined target site recurrence of three or more corresponded to a
Q-value o0.05.

TCGA data acquisition. All TCGA data, except for microRNA expression, were
downloaded from the Synapse archive as part of the TCGA Pan-Cancer project and
correspond to TCGA pan-cancer whitelist files (originally downloaded 25 January
2013). The TCGA Pan-Cancer project consists of 12 available tumour types that
include COAD, READ, LUAD, LUSC, BLCA, BRCA, GBM, UCEC, KIRC, LAML,
OV and HNSC. Some components of available data are currently incomplete, such
as missing normal microRNA-sequencing samples for LAML, ovarian carcinoma,
GBM, COAD and READ.

MicroRNA data were compiled individually from the TCGA data portal to
analyse microRNA isoform data, which were not present on Synapse at the time of
analysis. MicroRNA data were processed directly from the TCGA data portal
isoform files for all whitelist tumours as of 20 November 2012. Multiple reads from
an individual isoform were collapsed into a single read count; the reads per million
microRNAs mapped data form was used, which establishes each microRNA read
count as a fraction of the total microRNA population. MicroRNA-sequencing data
used in this study are summarized in Supplementary Table S1. MicroRNA data
underwent upper-quartile normalization50 using the edgeR software package51,
which produced the best overall normalization results compared with reads per
million or trimmed median of M-values52 normalization, followed by
determination of significant differences between tumour and normal samples using
a Fisher’s exact test with Bonferroni correction to determine FDRs.

As part of the Pan-Cancer project, some processed data were available for
second-line analysis. These data included pan-cancer CNV data processed through
the ABSOLUTE-GISTIC31 pipeline and mutation data processed through the
MuSiC28 suite and the MSKCC driver analytical pipeline, which were incorporated
into driver gene nominations. A list of data IDs in Synapse is provided in
Supplementary Table S4.

Pan-cancer oncomiR and miR-suppressor selection. Our goal in nominating
pan-cancer oncomiRs and miR suppressors was to determine microRNAs that
change consistently in the same direction across most cancers. Thus, we set a
stringent (qo0.05, Fisher’s exact test with Bonferroni correction for multiple
testing) threshold comparing tumour versus normal microRNA expression, and
required pan-cancer oncomiRs to have increased expression in six out of seven
tumour types with available tumour versus normal data. Alternately, pan-cancer
miR suppressors were required to have decreased expression in six out of seven
tumour types. Finally, when determining microRNAs to analyse for microRNA–
target interactions, we additionally filtered for dominant isoforms in broadly
conserved microRNA families that have peaks identified in at least 3 of 14 AGO-
CLIP data sets. This helped limit false positives in the microRNA–target analysis by
ensuring the interactions we observed consisted of conserved microRNA seeds
derived from microRNAs expressed in the AGO-CLIP cell lines.

TS and OC definitions. This analysis utilized three external data sets generated for
the purpose of pan-cancer analysis by the TCGA: MuSiC, MSKCC driver target
analysis and GISTIC. The strength of the MuSiC algorithm, developed at Washington
University25, is its ability to quality-control SNV samples, eliminate outliers (such as
certain hypermutated samples) and derive P-values to determine significantly
mutated genes versus the background mutation rate. We thus utilize MuSiC P-values
and mutation frequencies in our analysis. Specific mutations are likely to either
activate or inactivate genes, and definition of these mutation sites in a single gene can
ultimately define that gene as an OC or TS. The MSKCC algorithm29 creates a binary
definition of SNVs that we are able to use to stratify mutated genes as either OCs or
TS based on a functional impact score that weighs the probable impact of mutation at
a specific amino acid residue. Finally, GISTIC30, developed at the Broad Institute, is
an algorithm that controls for sample quality and low-amplitude copy number shifts
in CNV data derived from single-nucleotide polymorphism arrays. We utilized
processed GISTIC data to define CNV log ratios and set CNV thresholds. Our
mRNA q-values are performed in house and set at stringent, common threshold
value (qo0.005, Student’s t-test with Bonferroni correction).

A ranking system was developed, which integrates TCGA mRNA, CNV and
mutation data analysed by TCGA data available from the MuSiC, MSKCC driver
target and GISTIC algorithms. This system equally weighted CNV, mRNA
expression change and gene mutations as three orthogonal methods of identifying
TS and OCs across tumours. This method generated a continuous ranked list for
every gene, based on consistent changes across tumours, ranging from more
negative (TS) to more positive (OCs).

For mRNA data, þ 1 point was given for each of seven tumours with
microRNA-seq data available, in which there was a tumour versus normal
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significant increase (Student’s t-test, qo0.005), and � 1 point was assigned for
significant decreases in mRNA expression. For CNV data, GISTIC scores for
HUGO-gene-annotated locus copy-number changes were used. We set an
amplification/deletion threshold of 0.3 or � 0.3 for each sample. For each whitelist
tumour in which a given gene achieved amplification or in 30% of samples, þ 0.5
or � 0.5 points was awarded accordingly. Finally, for mutation scores, MSKCC and
MuSiC mutation analyses were both integrated. Gene mutations were only
considered based on MuSiC-determined Fisher’s combined P-test FDR qo0.005.
Mutation frequency was multiplied by 100 and then by 1 or � 1, based on
MSKCC driver analysis as a TS (*� 1) or an OG (*1). Genes nominated as both TS
and OG are negated. Truncating mutations based on MSKCC truncation tabulation
were assigned additional significance, and the fraction of truncations/total
mutations was multiplied by � 5 to attribute additional negative value to any gene
with high frequency of truncating mutations. All scores were then summed to
generate a final pan-cancer TS versus OC score. In sum, this analysis generated a
continuous negative-to-positive scale that ranked pan-cancer drivers based on
consistent mRNA, CNV or mutation changes across tumours. These three
values were scaled to have roughly equal weight to place equal emphasis on the
three orthogonal technologies used in the analysis. The scoring equation is
described below:

Final score ¼ mRNA increasesð Þ� mRNA decreasesð Þ
þ 0:5ð Þ CNV amplificationð Þ� 0:5ð Þ CNV deletionð Þ
þ 100ð Þðmutation frequency across all tumoursÞ
ð� 1 MSKCC driversÞ� 5ð Þ truncation frequencyð Þ

ð1Þ

There are six tumours with tumour versus normal mRNA (BLCA, BRCA,
HNSC, KIRC, LUAD and LUSC). All tumours contain CNV data and mutation
data. Mutation frequency must be significant (qo0.005, Fisher’s exact test) to be
considered at all. The MSKCC mutation analysis assigns þ 1 or � 1, based on
whether mutations in a given gene activate or inactivate the gene in question. Final
score is weighted so that each independent technology contributes equally to
overall scoring. Mutation score is highly dominant in several genes such as TP53
with very high mutation frequencies (B50% of all tumours).

MicroRNA–target enrichment calculations. To define an optimal method of
determining microRNA–target interactions, we intersected pan-cancer oncomiRs
and miR suppressors with pan-cancer TS versus pan-cancer OCs based on four
different possible approaches that included the following: using all AGO-CLIP-
defined binding sites without considering site conservation (for example,
TargetScan), using only AGO-CLIP-defined sites with Z3 occurrences (corre-
sponding to a significant peak based on random permutation) without considering
TargetScan, TargetScan-only binding sites, and finally by combining AGO-CLIP-
defined target sites with Z3 occurrences, or Z1 occurrences and a TargetScan call
(Supplementary Fig. S2). Only well-conserved TargetScan calls were considered in
this analysis. To calculate enrichments, the per cent of total targets per microRNA
defined as TS as compared with the per cent of total number of targets defined as
OCs for all genes in the top 100, 250, 500, 1,000, 1,500, 2,000, 2,500 and 3,000 TS
versus OCs (see Supplementary Fig. S2 for all levels of data and Supplementary
Data 6 for complete mRNA driver analysis).

The average per cent of TS versus OC targets was compared for oncomiRs and
miR suppressors using Student’s t-test based on the following equation:

For n number of OC or TS ranked in the top 3,000 (Supplementary Data 6),
where n¼ 1-3,000;

x TS targets per microRNA=total targets per microRNAð Þ
versus Students t-testð Þ
x OC targets per microRNA=total targets per microRNAð Þ:

ð2Þ

Cotargeting representation was performed with the Venn Diagram package in R.

MicroRNA pan-cancer correlations. Two sets of correlations were used in this
study. The first was microRNA to microRNA correlation for miR-17-19-130
family members identified as pan-cancer oncomiRs. These correlates consist of a
simple microRNA-to-microRNA Pearson’s R2 value. To generate a null distribu-
tion, 100 mature, dominant isoform microRNAs were randomly selected and
correlated to all randomly selected microRNAs across tumours. MicroRNAs that
were not expressed in a given tumour were filtered out of the analysis. This
generated a null distribution of random microRNA correlates (average Pearson’s
R2¼ 0.02, s.d.¼ 0.11) to which the miR-17-19-130 family correlates were
compared.

Similarly, for microRNA–mRNA targets, 100 random microRNAs were
correlated to 200 random genes. This created a null microRNA–mRNA correlation
(average Pearson’s R2¼ 0.005, s.d.¼ 0.10). To this combined correlations between
the miR-17-19-130 pan-cancer microRNAs and the PTEN, TGFBR2, SMAD4 and
ZBTB4 genes were compared to establish P-values.

AGO-CLIP SNV intersection. We developed the AGO-CLIP SNV intersection
(miSNP) algorithm and software package to investigate the effects of microRNAs
on tumour samples by integrating exome-sequencing data, AGO PAR-CLIP

microRNA/mRNA binding results and RNA-seq gene expression data across
multiple TCGA data sets. miSNP performs two types of integration. First, by using
only the mutation data and the AGO PAR-CLIP microRNA/mRNA binding sites,
miSNP aggregates and reports at gene level both the microRNA binding sites and
the mutations. Data collected for a particular gene include the individual micro-
RNAs targeting the gene, as well as the types of mutations in the microRNA
binding sites. Next, miSNP incorporates RNA-seq gene expression data to enable a
user to carry out a quantitative analysis of the effects of microRNAs and mutations
on gene expression across a TCGA data set. The algorithm operates on a gene-by-
gene basis. It first partition the tumour samples into those that contain mutations
in microRNA binding site; the algorithm can be customized to consider only
particular mutation types (for example, coding, silent). Next, it reports the gene
expression data for these genes and samples in a tabular format for further analysis.
Finally, it identifies genes for which the expression associates with the mutation
status in microRNA binding sites by comparing the gene expression distributions
of tumour samples with or without common sites using a two tailed Welch’s t-test;
miSNP reports both the fold-change and the t-test P-value for each gene. miSNP
was developed in Python utilizing the Numpy and Scipy modules. In the current
paper, we analysed all AGO-CLIP-defined microRNA target sites for mutations to
define a global perspective of possible interactions, but selected sites for validation
only from interactions with Z3 occurrences corresponding to a non-random
event.

The miSNP software package (Supplementary Software 1) is an open source
(Free BSD license) and is available for community download at: www.genboree.
org/miSNP.

Luciferase assays. The PTEN 30-UTR–luciferase reporter constructs were pur-
chased from Addgene (Cambridge, MA)26,53. All other constructs were purchased
directly from Switchgear Genomics (Palo Alto, CA) and generated using
pLightSwitch_30-UTR vectors. MicroRNA MirVana mimics and negative control
mimic were purchased from Ambion (Grand Island, NY). Luciferase assays were
performed using the LightSwitch assay kit according to the SwitchGear LightSwitch
luciferase assay kit protocols. Reporter plasmids and microRNA mimics were
transfected using Lipofectamine 2000 (Life Technologies, Grand Island, NY).
Luciferase activity was normalized to b-galactosidase activity. For coding-region
constructs, synthetic binding assays were generated by placing the coding region
downstream of the luciferase reporter in the UTR. All binding assays were
performed in confluent HEK293T cells for 24 h at 5 and 10 nM concentrations
microRNA mimic and 40 ng of luciferase and b-galactosidase vector. Experiments
were replicated twice at 5 nM and twice at 10 nM experimental concentrations in
quadruplicate, and results were combined for final statistical analysis. Insert
sequences novel to this study are available in Supplementary Data 11. HEK293T
cells were a kind gift from Dr Weiwen Long.
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