105 research outputs found

    Temporomandibular joint and Giant Panda's (Ailuropoda melanoleuca) adaptation to bamboo diet

    Get PDF
    Here, we present new evidence that evolutionary adaptation of the Ailuripodinae lineage to bamboo diet has taken place by morphological adaptations in the masticatory system. The giant panda in the wild and in captivity removes without an exception the outer skin of all bamboo shoots, rich in abrasive and toxic compounds, by the highly adapted premolars P3 and P4. The temporomandibular joint (TMJ) allows sidewise movement of the jaw and the premolars can, in a cusp-to-cusp position, remove the poorly digestible outer skin of the bamboo before crushing the bamboo with molars. Based on the evidence presented here, we suggest that adaptation of TMJ to lateral movement for enabling cusp-to-cusp contact of premolars is the crucial evolutionary factor as which we consider the key to understand the Ailuropodinae lineage adaptive pathway to utilize the bamboo resource

    Urinary estrogens as a non-invasive biomarker of viable pregnancy in the giant panda (Ailuropoda melanoleuca)

    Get PDF
    Female giant pandas show complex reproductive traits, being seasonally monoestrus, displaying a variable length embryonic diapause and exhibiting pseudopregnancy. Currently, there is no confirmatory non-invasive biomarker of blastocyst implantation or pregnancy. This study aimed to monitor urinary estrogens across gestation in pregnancy (n = 4), pseudopregnancy (n = 4) and non-birth cycles (n = 5) in the giant panda. A pregnancy-specific profile of estrogens corrected for urinary specific gravity was identified during the gestation period. Pregnant females showed increasing concentrations of estrogens for 29 days until birth, no increase was observed during pseudopregnancy and the two profiles were distinguishable from each other for the final 2 weeks of the cycle suggesting the estrogens are of placental origin. This allowed a nomogram, starting at a known fixed point during the cycle, to be created and tested with cycles of known outcome, and cycles which were inseminated but did not result in a birth. Non-birth profiles showed deviations from that of pregnancy. We believe these deviations indicate the point of failure of the placenta to support a developing cub. Non-invasive longitudinal monitoring of estrogen concentrations therefore has the potential to be developed as a panda pregnancy test to predict viable cub development

    Urinary estrogens as a non-invasive biomarker of viable pregnancy in the giant panda (Ailuropoda melanoleuca)

    Get PDF
    Female giant pandas show complex reproductive traits, being seasonally monoestrus, displaying a variable length embryonic diapause and exhibiting pseudopregnancy. Currently, there is no confirmatory non-invasive biomarker of blastocyst implantation or pregnancy. This study aimed to monitor urinary estrogens across gestation in pregnancy (n?=?4), pseudopregnancy (n?=?4) and non-birth cycles (n?=?5) in the giant panda. A pregnancy-specific profile of estrogens corrected for urinary specific gravity was identified during the gestation period. Pregnant females showed increasing concentrations of estrogens for 29 days until birth, no increase was observed during pseudopregnancy and the two profiles were distinguishable from each other for the final 2 weeks of the cycle suggesting the estrogens are of placental origin. This allowed a nomogram, starting at a known fixed point during the cycle, to be created and tested with cycles of known outcome, and cycles which were inseminated but did not result in a birth. Non-birth profiles showed deviations from that of pregnancy. We believe these deviations indicate the point of failure of the placenta to support a developing cub. Non-invasive longitudinal monitoring of estrogen concentrations therefore has the potential to be developed as a panda pregnancy test to predict viable cub development

    Expression of Elongation Factor (EF)-Tu Is Correlated with Prognosis of Gastric Adenocarcinomas

    Get PDF
    Altered expressions of mitochondria elongation factor Tu (EF-Tu) have been observed in certain types of cancers, including gastric cancer cell lines, but the impact of the alterations in gastric adenocarcinoma remains unclear. The purpose of this study was to investigate the expression of EF-Tu in gastric adenocarcinoma and to assess its clinical significance. A total of 104 paired resected gastric adenocarcinoma and corresponding normal specimens were collected in this study. EF-Tu expression was assessed by immunohistochemical staining. The correlation of EF-Tu expression and patients’ clinicopathological parameters was statically evaluated and the prognostic significance of EF-Tu expression was assessed by univariate and multivariate analyses. Forty-nine out of 104 (47.1%) gastric adenocarcinoma specimens showed high expression of EF-Tu, while the remaining 55 specimens showed weak or negative expression of EF-Tu. In contrast, EF-Tu high expression was detected in 62.5% (65 of 104) normal tissues. Down-regulation of EF-Tu was associated with serosal invasion (P = 0.042) and node involvement (P = 0.005), and down-regulation of EF-Tu was correlated with poor overall survival (P = 0.020). In curative resection (R0) patients, there were also significant differences (P = 0.043). In the multivariate analysis, the EF-Tu expression remained a significant independent prognostic factor (P = 0.038). Our results indicate that EF-Tu is expressed in both gastric adenocarcinoma and corresponding normal tissues. Down-regulation of EF-Tu expression is associated with advanced disease stage and EF-Tu expression maybe served as an independent prognostic factor

    Urinary specific gravity as an alternative for the normalisation of endocrine metabolite concentrations in giant panda (Ailuropoda melanoleuca) reproductive monitoring

    Get PDF
    Reproductive monitoring for captive breeding in giant pandas is based on behavioural observation and non-invasive hormone analysis. In urine, interpretation of results requires normalisation due to an animal’s changing hydration. Correction of urinary concentrations based on creatinine is the gold standard. In this study, a largely unexplored, easy-to-perform normalisation technique, based on urinary specific gravity (USpG), was examined and compared to creatinine. To this extent, six cycles from two female pandas (SB741(1) and SB569(5)) were monitored through urine analysis for oestrogen, progesterone, ceruloplasmin and 13,14-dihydro-15-keto-PGF2a (PGFM). The Pearson’s correlation between creatinine and USpG was high (r = 0.805–0.894; p 50% decrease during oestrus and >50% increase during primary progesterone rise. In parallel, respectively highest and lowest creatinine and USpG levels, were measured, with creatinine obviously more affected as a result of linkage with muscle tissue metabolism affected by reproductive hormones. As a consequence, metabolite levels were significantly different between both corrected datasets with significantly higher oestrogen peak levels during oestrus ranging from 2.13–86.93 and 31.61–306.45 ng/mL (USpG correction) versus 2.33–31.20 and 36.36–249.05 ng/mL Cr (creatinine correction) for SB569 and SB741 respectively, and significant lower progesterone levels during primary progesterone rise ranging from 0.35–3.21 and 0.85–6.80 ng/mL (USpG correction) versus 0.52–10.31 and 2.10–272.74 ng/mL Cr (creatinine correction) for SB569 and SB741 respectively. Consequently, USpG correction rendered unbiased profiles, less subject to variation and metabolic artefacts and therefore allowed a more straightforward identification of peak oestrogen and onset of secondary progesterone rise, being potentially advantageous for future studies unravelling key giant panda reproductive events, including (delayed) implantation. The alternative application of USpG as a normalisation factor was further supported by its easy application and environmental and technical robustness

    Pregnancy length and health in giant pandas: what can metabolic and urinary endocrine markers unveil?

    Get PDF
    Mature female giant pandas usually ovulate once a year. This is followed by an obligatory luteal phase, consisting of a long-lasting corpus luteum dormancy phase (CLD; primary increase in progestogens) and a much shorter active luteal phase (AL; secondary increase in progestogens). Varying duration of both the dormant (embryonic diapause) and AL (post-embryo reactivation) phases has hampered unambiguous pregnancy length determination in giant pandas until today. Additionally, progestogen profiles have been considered not to differ between pregnant and pseudopregnant cycles. Only ceruloplasmin, 13,14-dihydro-15-keto-PGF2α (PGFM) and – more recently – estrogens have been assigned diagnostic power so far. Our study investigated the competence of metabolic (fecal output) and Urinary Specific Gravity (USpG)-normalized urinary endocrine (progestogens, PGFM, glucocorticoids (GCM) and ceruloplasmin) markers for pregnancy monitoring including defining the duration of the AL phase length. Research on 24 (6 pregnant, 8 pseudopregnant and 10 non-birth) cycles of 6 giant pandas revealed a fixed AL phase length of 42 days in giant pandas, e.g. representing 6 weeks of post- diapause development in case of pregnancy. Progestogen concentrations were significantly higher in pregnant cycles throughout the majority of the AL phase, with significant higher values during the AL phase in healthy twin compared to singleton pregnancies. GCM concentrations were also markedly higher in giant pandas expecting offspring, with a clear increase towards birth in the final 2 weeks of pregnancy. This increase in GCM was running in parallel with elevating estrogen and PGFM concentrations, and decreasing progestogens. In addition, during the AL phase, a more pronounced decrease in fecal output was obvious for pregnant females. The combined profiles of non-invasive metabolic and endocrine markers, the latter normalized based on USpG, showed a true pregnancy signature during the AL phase. The findings of this study are applicable to retrospective evaluations of non-birth cycles facilitating categorizing those into pseudopregnant or lost pregnancies, with USpG-normalization of the urinary endocrine markers as a prerequisite

    Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions

    No full text
    Hydrogen production via solar water splitting is regarded as one of the most promising ways to utilize solar energy and has attracted more and more attention. Great progress has been made on photocatalytic water splitting for hydrogen production in the past few years. This review summarizes the very recent progress (mainly in the last 2-3 years) on three major types of solar hydrogen production systems: particulate photocatalysis (PC) systems, photoelectrochemical (PEC) systems, and photovoltaic-photoelectrochemical (PV-PEC) hybrid systems. The solar-to-hydrogen (STH) conversion efficiency of PC systems has recently exceeded 1.0% using a SrTiO73:La,Rh/Au/BiVO4:Mo photocatalyst, 2.5% for PEC water splitting on a tantalum nitride photoanode, and reached 22.4% for PV-PEC water splitting using a multi-junction GaInP/GaAs/Ge cell and Ni electrode hybrid system. The advantages and disadvantages of these systems for hydrogen production via solar water splitting, especially for their potential demonstration and application in the future, are briefly described and discussed. Finally, the challenges and opportunities for solar water splitting solutions are also forecasted. (C) 2016, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved

    latestprogressinhydrogenproductionfromsolarwatersplittingviaphotocatalysisphotoelectrochemicalandphotovoltaicphotoelectrochemicalsolutions

    No full text
    能源是人类生存和发展的物质基础,太阳能作为最丰富的清洁可再生能源之一,其开发利用受到了世界范围内的广泛关注.通过光催化分解水制氢将太阳能以化学能的形式储存起来不仅能利用太阳能制取高燃烧值的氢能,同时氢能可与CO2综合利用结合起来,在减少碳排放的同时,生成高附加值的化学品,实现碳氢资源的优化利用.光催化分解水制氢在过去的几年里取得了长足的进步,本综述从三种研究广泛的太阳能光催化分解水制氢途径(即光催化、光电催化以及光伏-光电耦合途径)入手,分别简要介绍了太阳能分解水制氢在近几年取得的最新研究进展.利用纳米粒子悬浮体系进行光催化分解水制氢成本低廉、易于规模化放大,被认为是未来应用最可行的方式之一,但是太阳能转化利用效率还偏低.最新报道的SrTiO3:La,Rh/Au/BiVO4:Mo光催化剂其太阳能到氢能(STH)转化效率已超过了1.0%,相比之前报道的大多数光催化剂体系有了数量级的飞跃,让人们对太阳能光催化分解水制氢未来的规模化应用看到了希望.高效宽光谱响应的光催化剂、高效电荷分离策略、新型高效助催化剂以及气体分离新方法和新材料等,均是粉末光催化剂体系研究最为关键的问题;光电催化分解水在过去2–3年内发展迅速,在一些典型的光阳极半导体材料(如BiVO4和Ta3N5等)体系上太阳能利用效率超过2.0%以上.最新研究发现,在Ta3N5光阳极的研究中,通过在光电极表面合理设计和构筑空穴传输层和电子阻挡层等策略,光电流和电极稳定性均可得到大幅度提升,光电流大小甚至可接近Ta3N5材料的理论极限电流.如果能进一步在过电位和电极稳定性上取得突破,该体系的STH转化效率还会得到大幅度改进.此外,光阴极的研究也越来越受到了研究者的关注;光伏-光电耦合体系在三种途径里面太阳能制氢效率最高,在多个体系上已超过10%以上,最近报道的利用多结GaInP/GaAs/Ge电池与Ni电催化剂耦合,其太阳能制氢效率可达到22.4%.虽然该种制氢途径的效率已超过其工业化应用的要求,但是光伏电池的成本(尤其是多结GaAs太阳电池)极大限制了其大面积规模化应用,同时还要考虑电催化剂的成本和效率等,光伏-光电耦合制氢是成本最高的太阳能制氢途径.需要指出的是,光伏-光电耦合制氢有望在一些特殊的领域最先取得实际应用,如为外太空航天器、远洋航海以及孤立海岛等传统能源无法满足的地方提供能源供给.总之,太阳能分解水制氢研究取得了一系列重要进展,太阳能制氢效率得到了大幅度提升,也是目前世界范围内关注的研究热点之一,不仅具有强的潜在工业应用背景,更为基础科学提供了诸多新的研究课题.这一极具挑战的研究领域,在先进技术快速发展和基础科学问题认识不断提高的基础上,不久的将来,有望在不久的将来在基础科学和应用研究方面取得重大突破

    Recent advances in in-situ transmission electron microscopy techniques for heterogeneous catalysis

    No full text
    Summary: The process of heterogeneous catalytic reaction under working conditions has long been considered a “black box”, which is mainly because of the difficulties in directly characterizing the structural changes of catalysts at the atomic level during catalytic reactions. The development of in situ transmission electron microscopy (TEM) techniques offers opportunities for introducing a realistic chemical reaction environment in TEM, making it possible to uncover the mystery of catalytic reactions. In this article, we present a comprehensive overview of the application of in situ TEM techniques in heterogeneous catalysis, highlighting its utility for observing gas-solid and liquid-solid reactions during thermal catalysis, electrocatalysis, and photocatalysis. in situ TEM has a unique advantage in revealing the complex structural changes of catalysts during chemical reactions. Revealing the real-time dynamic structure during reaction processes is crucial for understanding the intricate relationship between catalyst structure and its catalytic performance. Finally, we present a perspective on the future challenges and opportunities of in situ TEM in heterogeneous catalysis
    corecore