1,125 research outputs found

    Literature review and analysis of the application of health outcome assessment instruments in Chinese medicine

    Full text link
    OBJECTIVE: To evaluate the application of health assessment instruments in Chinese medicine. METHODS: According to a pre-defined search strategy, a comprehensive literature search for all articles published in China National Knowledge Infrastructure databases was conducted. The resulting articles that met the defined inclusion and exclusion criteria were used for analysis. RESULTS: A total of 97 instruments for health outcome assessment in Chinese medicine have been used in fundamental and theoretical research, and 14 of these were also used in 29 clinical trials that were randomized controlled trials, or descriptive or cross-sectional studies. In 2 152 Chinese medicine-based studies that used instruments in their methodology, more than 150 questionnaires were identified. Among the identified questionnaires, 51 were used in more than 10 articles (0.5%). Most of these instruments were developed in Western countries and few studies (4%) used the instrument as the primary evidence for their conclusions. CONCLUSION: Usage of instruments for health outcome assessment in Chinese medicine is increasing rapidly; however, current limitations include selection rationale, result interpretation and standardization, which must be addressed accordingly

    Wide-Range Tunable Dynamic Property of Carbon Nanotube-Based Fibers

    Full text link
    Carbon nanotube (CNT) fiber is formed by assembling millions of individual tubes. The assembly feature provides the fiber with rich interface structures and thus various ways of energy dissipation, as reflected by the non-zero loss tangent (>0.028--0.045) at low vibration frequencies. A fiber containing entangled CNTs possesses higher loss tangents than a fiber spun from aligned CNTs. Liquid densification and polymer infiltration, the two common ways to increase the interfacial friction and thus the fiber's tensile strength and modulus, are found to efficiently reduce the damping coefficient. This is because the sliding tendency between CNT bundles can also be well suppressed by the high packing density and the formation of covalent polymer cross-links within the fiber. The CNT/bismaleimide composite fiber exhibited the smallest loss tangent, nearly as the same as that of carbon fibers. At a higher level of the assembly structure, namely a multi-ply CNT yarn, the inter-fiber friction and sliding tendency obviously influence the yarn's damping performance, and the loss tangent can be tuned within a wide range, as similar to carbon fibers, nylon yarns, or cotton yarns. The wide-range tunable dynamic properties allow new applications ranging from high quality factor materials to dissipative systems

    Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites

    Full text link
    High performance nanocomposites require well dispersion and high alignment of the nanometer-sized components, at a high mass or volume fraction as well. However, the road towards such composite structure is severely hindered due to the easy aggregation of these nanometer-sized components. Here we demonstrate a big step to approach the ideal composite structure for carbon nanotube (CNT) where all the CNTs were highly packed, aligned, and unaggregated, with the impregnated polymers acting as interfacial adhesions and mortars to build up the composite structure. The strategy was based on a bio-inspired aggregation control to limit the CNT aggregation to be sub 20--50 nm, a dimension determined by the CNT growth. After being stretched with full structural relaxation in a multi-step way, the CNT/polymer (bismaleimide) composite yielded super-high tensile strengths up to 6.27--6.94 GPa, more than 100% higher than those of carbon fiber/epoxy composites, and toughnesses up to 117--192 MPa. We anticipate that the present study can be generalized for developing multifunctional and smart nanocomposites where all the surfaces of nanometer-sized components can take part in shear transfer of mechanical, thermal, and electrical signals

    Genetic enrichment of cardiomyocytes derived from mouse embryonic stem cells

    Get PDF
    Pluripotent embryonic stem cells (ESC) have the ability to differentiate into a variety of cell lineages in vitro, including cardiomyocytes. Successful applications of ESC-derived cardiomyocytes in cell therapy and tissue engineering were limited by difficulties in selecting the desired cells from the heterogeneous cell population. We describe a simple method to generate relatively pure cardiomyocytes from mouse ESCs. A construct comprising mouse cardiac α-myosin heavy chain (MHC) promoter driving the neomycin resistance gene and SV40 promoter driving the hygromycin resistant gene designated pMHCneo/ SV40-hygro, was stably transfected into mouse ESCs. The transgenic ESC line, designated MN6 retained the undifferentiated state and the potential of cardiogenic differentiation. After G418 selection, more than 99% of cells expressed α-sarcomeric actin. Immunocytological and ultrastructural analysis demonstrated that, the selected cardiomyocytes were highly differentiated. Our results represent a simple genetic manipulation used to product essentially pure cardiomyocytes from differentiating ESCs. It may facilitate the development of cell therapy in heart diseases.Key words: Embryonic stem cells, α-myosin heavy chain promoter, cardiomyocytes, differentiation, genetic enrichment

    A review of the pharmacological effects of the dried root of Polygonum cuspidatum (Hu Zhang) and its constituents

    Get PDF
    2013-2014 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Immuno-targeting the multifunctional CD38 using nanobody

    Get PDF
    published_or_final_versio

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory injury plays a critical role in intracerebral hemorrhage (ICH)-induced neurological deficits; however, the signaling pathways are not apparent by which the upstream cellular events trigger innate immune and inflammatory responses that contribute to neurological impairments. Toll-like receptor 4 (TLR4) plays a role in inflammatory damage caused by brain disorders.</p> <p>Methods</p> <p>In this study, we investigate the role of TLR4 signaling in ICH-induced inflammation. In the ICH model, a significant upregulation of TLR4 expression in reactive microglia has been demonstrated using real-time RT-PCR. Activation of microglia was detected by immunohistochemistry, cytokines were measured by ELISA, MyD88, TRIF and NF-κB were measured by Western blot and EMSA, animal behavior was evaluated by animal behavioristics.</p> <p>Results</p> <p>Compared to WT mice, TLR4<sup>−/− </sup>mice had restrained ICH-induced brain damage showing in reduced cerebral edema and lower neurological deficit scores. Quantification of cytokines including IL-6, TNF-α and IL-1β and assessment of macrophage infiltration in perihematoma tissues from TLR4<sup>−/−</sup>, MyD88<sup>−/− </sup>and TRIF<sup>−/− </sup>mice showed attenuated inflammatory damage after ICH. TLR4<sup>−/− </sup>mice also exhibited reduced MyD88 and TRIF expression which was accompanied by decreased NF-κB activity. This suggests that after ICH both MyD88 and TRIF pathways might be involved in TLR4-mediated inflammatory injury possibly via NF-κB activation. Exogenous hemin administration significantly increased TLR4 expression and microglial activation in cultures and also exacerbated brain injury in WT mice but not in TLR4<sup>−/− </sup>mice. Anti-TLR4 antibody administration suppressed hemin-induced microglial activation in cultures and in the mice model of ICH.</p> <p>Conclusions</p> <p>Our findings suggest that heme potentiates microglial activation <it>via </it>TLR4, in turn inducing NF-κB activation <it>via </it>the MyD88/TRIF signaling pathway, and ultimately increasing cytokine expression and inflammatory injury in ICH. Targeting TLR4 signaling may be a promising therapeutic strategy for ICH.</p

    A strategy for emergency treatment of Schistosoma japonicum-infested water

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schistosomiasis japonica, caused by contact with <it>Schistosoma japonicum </it>cercaria-infested water when washing, bathing or production, remains a major public-health concern in China. The purpose of the present study was to investigate the effect of a suspension concentrate of niclosamide (SCN) on killing cercaria of <it>S. japonicum </it>that float on the water surface, and its toxicity to fish, so as to establish an emergency-treatment intervention for rapidly killing cercaria and eliminating water infectivity.</p> <p>Results</p> <p>At 30 min after spraying 100 mg/L SCN, with niclosamide dosages of 0.01, 0.02, 0.03, 0.04 g/m<sup>2</sup>, the water infectivity reduced significantly and no infectivity was found at 60 min after spraying SCN. The surface of static water was sprayed with 100 mg/L SCN, the peak concentration was found at 0 min, and the solution diffused to site with a water depth of 10 cm after 10 min. 30 min later, SCN diffused to the whole water body, and distributed evenly. After spraying 100 mg/L SCN onto the surface of the water with a volume of(3.14 × 20<sup>2</sup>×50)cm<sup>3</sup>, with niclosamide dosages of 0.02 g/m<sup>2</sup>, 96 h later, no death of zebra fish was observed.</p> <p>Conclusions</p> <p>By spraying 100 mg/L SCN, with a niclosamide dosage of 0.02 g/m<sup>2 </sup>onto the surface of <it>S. japonicum</it>-infested water, infectivity of the water can be eliminated after 30-60 min, and there is no evident toxicity to fish. This cercaria-killing method, as an emergency-treatment intervention for infested water, can be applied in those forecasting and early warning systems for schistosomiasis.</p
    corecore