14,711 research outputs found

    Knowledge Transformations between Frame Systems and RDB Systems

    Get PDF
    For decades, researchers in knowledge representation (KR) have argued for and against various choices in KR formalisms, such as Rules, Frames, Semantic nets, and Formal logic. In this paper, we present a set of transformations that can be used to move knowledge across two fundamentally different KR formalisms: Frame-based systems and Relational database systems (RDBs). We also describe partial implementations of these transformations for a specific pair of such systems: Protégé and the Postgres RDB system

    An active interferometric method for extreme impedance on-wafer device measurements

    Get PDF
    Nano-scale devices and high-power transistors present extreme impedances, which are far removed from the 50-Ω reference impedance of conventional test equipment, resulting in a reduction in the measurement sensitivity as compared with impedances close to the reference impedance. This letter describes a novel method based on active interferometry to increase the measurement sensitivity of a vector network analyzer for measuring such extreme impedances, using only a single coupler. The theory of the method is explained with supporting simulation. An interferometry-based method is demonstrated for the first time with on-wafer measurements, resulting in an improved measurement sensitivity for extreme impedance device characterization of up to 9%

    Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels

    Full text link
    In the absence of advection, confined diffusion characterizes transport in many natural and artificial devices, such as ionic channels, zeolites, and nanopores. While extensive theoretical and numerical studies on this subject have produced many important predictions, experimental verifications of the predictions are rare. Here, we experimentally measure colloidal diffusion times in microchannels with periodically varying width and contrast results with predictions from the Fick-Jacobs theory and Brownian dynamics simulation. While the theory and simulation correctly predict the entropic effect of the varying channel width, they fail to account for hydrodynamic effects, which include both an overall decrease and a spatial variation of diffusivity in channels. Neglecting such hydrodynamic effects, the theory and simulation underestimate the mean and standard deviation of first passage times by 40\% in channels with a neck width twice the particle diameter. We further show that the validity of the Fick-Jakobs theory can be restored by reformulating it in terms of the experimentally measured diffusivity. Our work thus demonstrates that hydrodynamic effects play a key role in diffusive transport through narrow channels and should be included in theoretical and numerical models.Comment: 7 pages, 4 figure

    Lower Bounds on Mutual Information

    Get PDF
    We correct claims about lower bounds on mutual information (MI) between real-valued random variables made in A. Kraskov {\it et al.}, Phys. Rev. E {\bf 69}, 066138 (2004). We show that non-trivial lower bounds on MI in terms of linear correlations depend on the marginal (single variable) distributions. This is so in spite of the invariance of MI under reparametrizations, because linear correlations are not invariant under them. The simplest bounds are obtained for Gaussians, but the most interesting ones for practical purposes are obtained for uniform marginal distributions. The latter can be enforced in general by using the ranks of the individual variables instead of their actual values, in which case one obtains bounds on MI in terms of Spearman correlation coefficients. We show with gene expression data that these bounds are in general non-trivial, and the degree of their (non-)saturation yields valuable insight.Comment: 4 page

    Magnetization states and switching in narrow-gapped ferromagnetic nanorings

    Full text link
    We study permalloy nanorings that are lithographically fabricated with narrow gaps that break the rotational symmetry of the ring while retaining the vortex ground state, using both micromagnetic simulations and magnetic force microscopy (MFM). The vortex chirality in these structures can be readily set with an in-plane magnetic field and easily probed by MFM due to the field associated with the gap, suggesting such rings for possible applications in storage technologies. We find that the gapped ring edge characteristics (i.e., edge profile and gap shape) are critical in determining the magnetization switching field, thus elucidating an essential parameter in the controls of devices that might incorporate such structures

    Molecular wires acting as quantum heat ratchets

    Get PDF
    We explore heat transfer in molecular junctions between two leads in the absence of a finite net thermal bias. The application of an unbiased, time-periodic temperature modulation of the leads entails a dynamical breaking of reflection symmetry, such that a directed heat current may emerge (ratchet effect). In particular, we consider two cases of adiabatically slow driving, namely (i) periodic temperature modulation of only one lead and (ii) temperature modulation of both leads with an ac driving that contains a second harmonic, thus generating harmonic mixing. Both scenarios yield sizeable directed heat currents which should be detectable with present techniques. Adding a static thermal bias, allows one to compute the heat current-thermal load characteristics which includes the ratchet effect of negative thermal bias with positive-valued heat flow against the thermal bias, up to the thermal stop-load. The ratchet heat flow in turn generates also an electric current. An applied electric stop-voltage, yielding effective zero electric current flow, then mimics a solely heat-ratchet-induced thermopower (``ratchet Seebeck effect''), although no net thermal bias is acting. Moreover, we find that the relative phase between the two harmonics in scenario (ii) enables steering the net heat current into a direction of choice.Comment: 9 pages, 8 figure
    corecore