
Knowledge Transformations
between Frame Systems and RDB Systems

John H. Gennari
Biomedical & Health Informatics

University of Washington
gennari@u.washington.edu

Peter Mork
Computer Science Dep’t
University of Washington

pmork@cs.washington.edu

Hao Li
Biomedical & Health Informatics

University of Washington
haoli@u.washington.edu

ABSTRACT
For decades, researchers in knowledge representation (KR)
have argued for and against various choices in KR formal-
isms, such as Rules, Frames, Semantic nets, and Formal
logic. In this paper, we present a set of transformations that
can be used to move knowledge across two fundamentally
different KR formalisms: Frame-based systems and Rela-
tional database systems (RDBs). We also describe partial
implementations of these transformations for a specific pair
of such systems: Protégé and the Postgres RDB system.

Categories and Subject Descriptors
I.2.4 Knowledge Representation Formalisms and Methods
– representation languages

General Terms
Algorithms, Performance, Design.

Keywords
Knowledge interoperation, knowledge transformation.

INTRODUCTION
Researchers in knowledge representation (KR) have long
understood that there is a tradeoff between the representa-
tional expressivity of a KR versus the efficiency of reason-
ing with that KR.[1] However, the great majority of re-
searchers have used this tradeoff simply to explain how
their preferred choice along the expressivity continuum
was “ideal”, or at least “appropriate” for their particular
class of problems. In today’s world of heterogeneous
knowledge sources, it is impractical to suggest that all re-
searchers converge on some “best” or “optimal” uniform
KR formalism. It is also quite unsatisfactory to simply say
that one KR is more expressive and less tractable than an-
other. Instead, what researchers need are methods to com-
bine and synthesize data and knowledge across KR sys-
tems, even in the face of fundamental representational dif-
ferences.

We have developed a paired set of transformation rules
that describe how to move data back and forth between a
frame-based KR system and a relational database (RDB)
system. These rules are a specific example of a more gen-

eral architecture for defining how to transform data from
one KR formalism to another. We use the term “knowledge
representation formalism” very broadly, so as to include
choices such as XML and relational databases.

We focus our work on a particular pair of KR systems:
Protégé, a frame-based system, and Postgres, a relational
database system. Protégé is a very well-used Frame-based
system that subscribes to the Open Knowledge Base
Connectivity (OKBC) meta-model.[2] Postgres is an open
source relational database system. Unlike MySQL (a more
popular open-source RDB), Postgres provides a fairly
complete implementation of the SQL meta-model.

Intuitively, these two sorts of KR systems may seem quite
dissimilar; they were certainly designed with very different
motivations.[3] Yet, as we will show, one can map at least
a portion of data and knowledge from one to the other. In-
deed, our belief is that one can transfer enough—enough to
make it worthwhile for collaborators to communicate even
though they have chosen very different KR systems.

TRANSFORMATIONS, PROTÉGÉ RDBs
At a coarse level, the transformation from Protégé to RDBs
is simple: Classes become tables, slots become attributes
(columns), and individuals become rows. However, this
simple view omits a great deal from the source Protégé
model. In fact, because the expressivity of frame-based
systems is greater than that of relational databases, trans-
formations in this direction must necessarily lose some
information. (A complete and formal specification of these
transformations can be found at the Seedpod web site.[4])

Most obviously, our transformations do not fully capture
inheritance across classes. If the KB includes parent and
child classes, these simply appear as separate tables, and
there is no explicit statement that attributes of the parent
class should also be attributes of its descendants.

In addition, the OKBC model blurs the strong distinction
that a database makes between tables (classes) and tuples
(individuals). Thus, in Protégé, one can have “own-slots”
that effectively provide arbitrary attribute-value pairs for
classes (rather than individuals). In an RDB, one cannot
easily annotate the definition of a table in this manner.
Similarly, there is no notion of a user-defined metaclass in
an RDB. (Although most RDB systems, including Postgres,
use a special table that lists all tables in the DB.)

Copyright is held by the author/owner(s).
K-CAP’05, October 2–5, 2005, Banff, Alberta, Canada.
ACM 1-59593-163-5/05/0010.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Washington Structural Informatics Group Publications

https://core.ac.uk/display/9412316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TRANSFORMATIONS, RDBs PROTÉGÉ
When transforming data from the less-expressive relational
formalism to Protégé, we face a different set of challenges.
In a sense, when going in this direction, the task is to “re-
verse-engineer” the underlying logical model, given only
the physical model of the relational schema of tables, at-
tributes, and constraints. Our rules in this direction operate
roughly in reverse: Tables become classes, attributes be-
come slots, and rows becomes individuals (again, details
are available at the Seedpod web site [4]).

Although an RDB system is generally less expressive than
an OKBC system, there are some exceptions. For example,
modern RDB systems (including Postgres) allow for a
number of different sorts of integrity constraints and trig-
gers that may be added to particular columns. For example,
if one column (such as a body-mass-index) is dependant on
other columns (such as height and weight), this relationship
can be expressed as a constraint. In general, such a con-
straint would be expressed as an axiom in an OKBC sys-
tem. However, although Protégé includes special classes
for expressing such axioms, it does not include any built-in
way to interpret or enforce axioms. Therefore we have not
tried to transform this sort of information.

IMPLEMENTATIONS
There are a variety of ways that our rules could be used by
transformation systems. For example, the Protégé-to-RDBs
rules could be implemented as an export function within
Protégé, or as an import function in some relational DB
system. To date, we have developed partial implementa-
tions of our transformation rules in both directions, as ex-
tensions to the Protégé system.

A portion of our Protégé-to-RDB rules are implemented as
part of the Seedpod system, which exports database tables
from Protégé.[4] The Seedpod system has been tested with
an experiment management system for brain researchers.
Seedpod currently does not export any individuals—all of
the tables it provides for export are empty.

Likewise, some of our RDB-to-Protégé rules are imple-
mented in the DataGenie Protégé plug-in. (See the Protégé
plug-in library at protege.stanford.edu.) In part, the Data-
Genie plug-in was built in response to the demand for data
transformations. Protégé users wanted to build a frame-
based ontology and then populate parts of this ontology
with individuals from a pre-existing database. DataGenie is
an extension (a plug-in) to the base Protégé system that
implements most of our RDB-to-Protégé transformation
rules so that users can import data from RDBs.

The Protégé system also includes a built-in “convert-
project-to-DB” functionality. However, this function is
quite different from Seedpod or any application of our
transformation rules. In particular, this conversion function
saves the entire Protégé KB as an entity-attribute-value
(EAV) database. The advantage of this choice is that there

is no loss of information. However, the disadvantage is that
there is only a single table, and therefore the system cannot
provide any efficient indexing or DB querying. In contrast,
the tables generated by Seedpod are designed to more
closely match how a DB designer would choose to model
the information in the Protégé KB.

SUMMARY
Choices in knowledge representation are important. Our
architecture and our transformation rules should not be
interpreted to mean that researchers can be cavalier about
their choice of a KR system. However, our claim is that
differences in expressivity can be overcome: Even if loss-
less transformation across different KRs is impossible,
enough information can be retained to make data transfor-
mations worthwhile. Our plan is to test this hypothesis in
the bio-informatics domain, where there is a strong need
and motivation to collaborate and share data, and where
there is a wide variety of different KR systems in use.

Our current implementations are not satisfactory. One of
the significant advantages of a formal set of rules is that
they can be used to deduce what information is lost or al-
tered when moved from one KR to another. Thus, systems
like Seedpod or DataGenie that implement these transfor-
mations should include user interfaces that make explicit
the information that will be lost. Users can then better un-
derstand the cost of a particular transformation and they
may be able to adjust or modify information so that it can
be better captured by the target KR.

More generally, we hope that our sets of rules represent a
first step toward a larger library of transformations among
a variety of meta-models. Our next steps will be to work
with bio-informatics researchers and real-world knowledge
and data stores, to validate that our transformations can
help make knowledge sharing easier and more transparent.

Acknowledgements
Thanks to Adam Silberfein for work with DataGenie, and addi-
tional ideas for RDBs Protégé transformations. This work was
partially funded by a training grant (#1T15LM07441-01) and a
Bisti planning grant (#P20 LM007714) from the NLM.

REFERENCES
[1] Levesque HJ and Brachman RJ. Expressiveness and tractabil-

ity in knowledge representation and reasoning. Computational
Intelligence, 1987; 3:78-93.

[2] Gennari JH, Musen MA, Fergerson RW, et al. The evolution
of Protégé: An environment for knowledge-based systems de-
velopment. International Journal of Human-Computer Stud-
ies, 2003; 58(1):89-123.

[3] Uschold M and Gruninger M. Ontologies and Semantics for
Seamless Connectivity. SIGMOD Record, 2004; 33(4):58-64.

[4] Project Seedpod, at
http://sig.biostr.washington.edu/projects/seedpod/

