188 research outputs found

    Leveraging Rich Communication Tools: Evidence of Online Trust and Guanxi in China

    Get PDF
    Driven by the evolution of consumer-to-consumer (C2C) online marketplaces, we examine the role of communication tools (i.e., an instant messenger, internal message box and a feedback system), in facilitating dyadic online transactions in the Chinese C2C marketplace. Integrating the Chinese concept of guanxi with theories of social translucence and social presence, we introduce a structural model that explains how rich communication tools influence a website’s interactivity and presence, subsequently building trust and guanxi among buyers and sellers, and ultimately predicting buyers’ repurchase intentions. The data collected from 185 buyers in TaoBao, China’s leading C2C online marketplace, strongly support the proposed model. We believe that this research is the first formal study to show evidence of guanxi in online C2C marketplaces, and it is attributed to the role of communication tools to enhance a website’s interactivity and presence

    The Multimethodological Investigation of Knowledge Sharing Practices in Eastwei

    Get PDF
    The sequential or parallel application of a number of complementary methods offers researchers the potential of a holistic perspective to analyse and interpret a phenomenon. In this paper, we report on our multimethodological investigation into the knowledge sharing practices of Eastwei, a medium sized firm providing professional services in China, guided by an overarching action research framework. We introduce the research context, explain the selection of methods, and describe our experiences in their application. We then reflect on the integration of complementary research methods and epistemologies in this research project, as well as the potential for similar integrations in future research as we assess the contributions of the research. Finally, we summarise the lessons learned and conclude the pape

    BHDPC Is a Novel Neuroprotectant That Provides Anti-neuroinflammatory and Neuroprotective Effects by Inactivating NF-κB and Activating PKA/CREB.

    Get PDF
    Microglia-mediated neuroinflammatory responses are inevitable and important pathological processes in several kinds of disorder of the central nervous system (CNS). Therefore, alleviating activated microglia-induced inflammatory process might be a valuable therapeutic approach to neuroinflammation-related diseases. In the present study, we investigated BHDPC, a novel neuroprotectant discovered in our previous study that had anti-inflammatory effects under neuroinflammatory conditions. First, we found that BHDPC could inhibit neuroinflammatory responses and promote microglial M2 phenotype polarization in both lipopolysaccharide (LPS)-activated BV-2 microglia l cells. Furthermore, BHDPC provided protective actions against neuroinflammation-induced neurotoxicity in HT22 mouse hippocampal cells co-cultured with activated BV-2 microglia. Further experiments demonstrated that BHDPC could suppress LPS-induced activation of transcription factor nuclear factor kappa B (NF-κB) via interfering with the degradation of the inhibitor of kappa B (IκB) and phosphorylation of IκB, the IκB kinase (IKK). Moreover, we also found that BHDPC could induce phosphorylation of cAMP-dependent protein kinase A (PKA) and cAMP-response element-binding protein (CREB) in BV-2 microglial cells. Also, using the PKA-specific inhibitor, we found that BHDPC-induced CREB phosphorylation was dependent on PKA, which also contributed to BHDPC-mediated anti-inflammation and neuroprotection

    Inhibitory effects of betulinic acid on LPS-induced neuroinflammation involve M2 microglial polarization via CaMKKβ-dependent AMPK activation

    Get PDF
    In response to the microenvironment, microglia may polarize into either an M1 pro-inflammatory phenotype, exacerbating neurotoxicity, or an M2 anti-inflammatory phenotype, conferring neuroprotection. Betulinic acid (BA) is a naturally pentacyclic triterpenoid with considerable anti-inflammatory properties. Here, we aim to investigate the potential effects of BA on microglial phenotype polarization and to reveal the underlying mechanisms of action. First, we confirmed that BA promoted M2 polarization and inhibited M1 polarization in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Then, we demonstrated that the effect of BA on microglial polarization was dependent on AMP-activated protein kinase (AMPK) activation, as evidenced by the fact that both AMPK inhibitor compound C and AMPK siRNA abolished the M2 polarization promoted by BA. Moreover, we found that calmodulin-dependent protein kinase kinase β (CaMKKβ), but not liver kinase B1, was the upstream kinase required for BA-mediated AMPK activation and microglial M2 polarization, via the use of both the CaMKKb inhibitor STO-609 and CaMKKβ siRNA. Finally, BA enhanced AMPK phosphorylation and promoted M2 microglial polarization in the cerebral cortex of LPSinjected mice brains, which was attenuated by pre-administration of the AMPK inhibitor. This study demonstrated that BA promoted M2 polarization of microglia, thus conferring anti-neuroinflammatory effects via CaMKKβ-dependent AMPK activation

    An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers

    Get PDF
    Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H₂. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH₄ to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H₂ oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface

    APOE Genotype-Function Relationship: Evidence of −491 A/T Promoter Polymorphism Modifying Transcription Control but Not Type 2 Diabetes Risk

    Get PDF
    BACKGROUND: The apolipoprotein E gene (APOE) coding polymorphism modifies the risks of Alzheimer's disease, type 2 diabetes, and coronary heart disease. Aside from the coding variants, single nucleotide polymorphism (SNP) of the APOE promoter has also been shown to modify the risk of Alzheimer's disease. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigate the genotype-function relationship of APOE promoter polymorphism at molecular level and at physiological level: i.e., in transcription control of the gene and in the risk of type 2 diabetes. In molecular studies, the effect of the APOE -491A/T (rs449647) polymorphism on gene transcription was accessed by dual-luciferase reporter gene assays. The -491 A to T substitution decreased the activity (p<0.05) of the cloned APOE promoter (-1017 to +406). Using the -501 to -481 nucleotide sequence of the APOE promoter as a 'bait' to screen the human brain cDNA library by yeast one-hybrid system yielded ATF4, an endoplasmic reticulum stress response gene, as one of the interacting factors. Electrophoretic-mobility-shift assays (EMSA) and chromatin immuno-precipitation (ChIP) analyses further substantiated the physical interaction between ATF4 and the APOE promoter. Over-expression of ATF4 stimulated APOE expression whereas siRNA against ATF4 suppressed the expression of the gene. However, interaction between APOE promoter and ATF4 was not -491A/T-specific. At physiological level, the genotype-function relationship of APOE promoter polymorphism was studied in type 2 diabetes. In 630 cases and 595 controls, three APOE promoter SNPs -491A/T, -219G/T (rs405509), and +113G/C (rs440446) were genotyped and tested for association with type 2 diabetes in Hong Kong Chinese. No SNP or haplotype association with type 2 diabetes was detected. CONCLUSIONS/SIGNIFICANCE: At molecular level, polymorphism -491A/T and ATF4 elicit independent control of APOE gene expression. At physiological level, no genotype-risk association was detected between the studied APOE promoter SNPs and type 2 diabetes in Hong Kong Chinese

    Genome-wide expression assay comparison across frozen and fixed postmortem brain tissue samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression assays have been shown to yield high quality genome-wide data from partially degraded RNA samples. However, these methods have not yet been applied to postmortem human brain tissue, despite their potential to overcome poor RNA quality and other technical limitations inherent in many assays. We compared cDNA-mediated annealing, selection, and ligation (DASL)- and <it>in vitro </it>transcription (IVT)-based genome-wide expression profiling assays on RNA samples from artificially degraded reference pools, frozen brain tissue, and formalin-fixed brain tissue.</p> <p>Results</p> <p>The DASL-based platform produced expression results of greater reliability than the IVT-based platform in artificially degraded reference brain RNA and RNA from frozen tissue-based samples. Although data associated with a small sample of formalin-fixed RNA samples were poor when obtained from both assays, the DASL-based platform exhibited greater reliability in a subset of probes and samples.</p> <p>Conclusions</p> <p>Our results suggest that the DASL-based gene expression-profiling platform may confer some advantages on mRNA assays of the brain over traditional IVT-based methods. We ultimately consider the implications of these results on investigations of neuropsychiatric disorders.</p

    Apolipoprotein M Gene (APOM) Polymorphism Modifies Metabolic and Disease Traits in Type 2 Diabetes

    Get PDF
    This study aimed at substantiating the associations of the apolipoproein M gene (APOM) with type 2 diabetes (T2D) as well as with metabolic traits in Hong Kong Chinese. In addition, APOM gene function was further characterized to elucidate its activity in cholesterol metabolism. Seventeen APOM SNPs documented in the NCBI database were genotyped. Five SNPs were confirmed in our study cohort of 1234 T2D and 606 control participants. Three of the five SNPs rs707921(C+1871A), rs707922(G+1837T) and rs805264(G+203A) were in linkage disequilibrium (LD). We chose rs707922 to tag this LD region for down stream association analyses and characterized the function of this SNP at molecular level. No association between APOM and T2D susceptibility was detected in our Hong Kong Chinese cohort. Interestingly, the C allele of rs805297 was significantly associated with T2D duration of longer than 10 years (OR = 1.245, p = 0.015). The rs707922 TT genotype was significantly associated with elevated plasma total- and LDL- cholesterol levels (p = 0.006 and p = 0.009, respectively) in T2D patients. Molecular analyses of rs707922 lead to the discoveries of a novel transcript APOM5 as well as the cryptic nature of exon 5 of the gene. Ectopic expression of APOM5 transcript confirmed rs707922 allele-dependent activity of the transcript in modifying cholesterol homeostasis in vitro. In conclusion, the results here did not support APOM as a T2D susceptibility gene in Hong Kong Chinese. However, in T2D patients, a subset of APOM SNPs was associated with disease duration and metabolic traits. Further molecular analysis proved the functional activity of rs707922 in APOM expression and in regulation of cellular cholesterol content
    corecore