44 research outputs found

    On the natural frequency and vibration mode of composite beam with non-uniform cross-section

    Get PDF
    In this paper, the vibratory properties and expression of natural modes of laminated composite beam with variable cross-section ratios of elastic modulus and density along the axis of the beam have been investigated via theoretical analysis. Based on the generalized Hamilton principle, the longitudinal and transverse vibration equations have been deduced by the means of variational method. Then, the natural frequencies of longitudinal and transverse vibration modes have been obtained using the method of power series, which agree well with finite element simulations. The first-order natural frequencies of longitudinal and transverse of composite beams are plotted as a function of the elastic modulus or densities difference of two components. With distinct material characteristics, the effect of shape factor on the first and second order lateral modes of composite beam is also revealed. In addition, the study shows that the boundary conditions impose a strong effect on the shape factor. The method presented in this paper is not only suitable for the laminated composite beam with variable cross-section, but will also be applicable to more general cases of composite beams of complex geometry and component in vibration mechanics. This controllable vibration performance achieved in this paper may shed some light on and stimulate new architectural design of composite engineering structures

    Assessing Long-Distance Atmospheric Transport of Soilborne Plant Pathogens

    Full text link
    Pathogenic fungi are a leading cause of crop disease and primarily spread through microscopic, durable spores adapted differentially for both persistence and dispersal. Computational Earth System Models and air pollution models have been used to simulate atmospheric spore transport for aerial-dispersal-adapted (airborne) rust diseases, but the importance of atmospheric spore transport for soil-dispersal-adapted (soilborne) diseases remains unknown. This study adapts the Community Atmosphere Model, the atmospheric component of the Community Earth System Model, to simulate the global transport of the plant pathogenic soilborne fungus Fusarium oxysporum, F. oxy. Our sensitivity study assesses the model's accuracy in long-distance aerosol transport and the impact of deposition rate on long-distance spore transport in Summer 2020 during a major dust transport event from Northern Sub-Saharan Africa to the Caribbean and southeastern U.S. We find that decreasing wet and dry deposition rates by an order of magnitude improves representation of long distance, trans-Atlantic dust transport. Simulations also suggest that a small number of viable spores can survive trans-Atlantic transport to be deposited in agricultural zones. This number is dependent on source spore parameterization, which we improved through a literature search to yield a global map of F. oxy spore distribution in source agricultural soils. Using this map and aerosol transport modeling, we show how viable spore numbers in the atmosphere decrease with distance traveled and offer a novel danger index for viable spore deposition in agricultural zones

    Stratospheric impacts on dust transport and air pollution in West Africa and the Eastern Mediterranean

    Get PDF
    Saharan dust intrusions strongly impact Atlantic and Mediterranean coastal regions. Today, most operational dust forecasts extend only 2–5 days. Here we show that on timescales of weeks to months, North African dust emission and transport are impacted by sudden stratospheric warmings (SSWs), which establish a negative North Atlantic Oscillation-like surface signal. Chemical transport models show a large-scale dipolar dust response to SSWs, with the burden in the Eastern Mediterranean enhanced up to 30% and a corresponding reduction in West Africa. Observations of inhalable particulate (PM(10)) concentrations and aerosol optical depth confirm this dipole. On average, a single SSW causes 680–2460 additional premature deaths in the Eastern Mediterranean and prevents 1180–2040 premature deaths in West Africa from exposure to dust-source fine particulate (PM(2.5)). Currently, SSWs are predictable 1–2 weeks in advance. Altogether, the stratosphere represents an important source of subseasonal predictability for air quality over West Africa and the Eastern Mediterranean
    corecore