61 research outputs found

    Data-based bipartite formation control for multi-agent systems with communication constraints

    Get PDF
    This article investigates data-driven distributed bipartite formation issues for discrete-time multi-agent systems with communication constraints. We propose a quantized data-driven distributed bipartite formation control approach based on the plant’s quantized and saturated information. Moreover, compared with existing results, we consider both the fixed and switching topologies of multi-agent systems with the cooperative-competitive interactions. We establish a time-varying linear data model for each agent by utilizing the dynamic linearization method. Then, using the incomplete input and output data of each agent and its neighbors, we construct the proposed quantized data-driven distributed bipartite formation control scheme without employing any dynamics information of multi-agent systems. We strictly prove the convergence of the proposed algorithm, where the proposed approach can ensure that the bipartite formation tracking errors converge to the origin, even though the communication topology of multi-agent systems is time-varying switching. Finally, simulation and hardware tests demonstrate the effectiveness of the proposed scheme

    Prognostic role of GPER/Ezrin in triple-negative breast cancer is associated with menopausal status

    Get PDF
    The role of G protein-coupled estrogen receptor 1 (GPER) signaling, including promotion of Ezrin phosphorylation (which could be activated by estrogen), has not yet been clearly identified in triple-negative breast cancer (TNBC). This study aimed to evaluate the prognostic value of GPER and Ezrin in TNBC patients. Clinicopathologic features including age, menopausal status, tumor size, nuclear grade, lymph node metastasis, AJCC TNM stage, and ER, PR and HER-2 expression were evaluated from 249 TNBC cases. Immunohistochemical staining of GPER and Ezrin was performed on TNBC pathological sections. Kaplan–Meier analyses, as well as logistic regressive and Cox regression model tests were applied to evaluate the prognostic significance between different subgroups. Compared to the GPER-low group, the GPER-high group exhibited higher TNM staging (P = 0.021), more death (P < 0.001), relapse (P < 0.001) and distant events (P < 0.001). Kaplan–Meier analysis showed that GPER-high patients had a decreased OS (P < 0.001), PFS (P < 0.001), LRFS (P < 0.001) and DDFS (P < 0.001) than GPER-low patients. However, these differences in prognosis were not statistically significant in post-menopausal patients (OS, P = 0.8617; PFS, P = 0.1905; LRFS, P = 0.4378; DDFS, P = 0.2538). There was a significant positive correlation between GPER and Ezrin expression level (R = 0.508, P < 0.001) and the effect of Ezrin on survival prognosis corresponded with GPER. Moreover, a multivariable analysis confirmed that GPER and Ezrin level were both significantly associated with poor DDFS (HR: 0.346, 95% CI 0.182–0.658, P = 0.001; HR: 0.320, 95% CI 0.162–0.631, P = 0.001). Thus, overexpression of GPER and Ezrin may contribute to aggressive behavior and indicate unfavorable prognosis in TNBC; this may correspond to an individual’s estrogen levels

    Biological control agents colonize litchi fruit during storage and stimulate physiological responses to delay pericarp browning

    Get PDF
    IntroductionLitchi is an economically important fruit in subtropical countries, but pericarp browning can limit its shelf life outside of controlled storage conditions. Effective and sustainable biological control strategies are needed to protect fruit against postharvest browning.Results and DiscussionIn this study, we show that the four bacterial strains Bacillus licheniformis HS10, B. amyloliquefaciens LI24 and PP19, and Exiguobacterium acetylicum SI17 can delay fruit browning in both laboratory trials (LTs) and field plus laboratory trials (FLTs). Strains HS10, LI24, PP19 and SI17 showed 47.74%, 35.39%, 33.58% and 32.53% browning-inhibitory efficacy respectively at 180 h in LT. Litchi sarcocarp interior sourced isolate SI17 showed 74.05% inhibit-brown efficacy at 216 h in FLTs, performing better in FLT than in LT. Furthermore, strains PP19 and SI17 colonized the fruit pericarp and increased total phenolic and anthocyanin contents but decreased peroxidase and polyphenol oxidase activity. This is the first report of E. acetylicum (SI17) and B. licheniformis (HS10) strains acting as biological control agents (BCAs) to delay postharvest browning in litchi fruit. We conclude that PP19 and SI17 are promising BCAs against fruit browning, and their application could be effective for prolonging the shelf life of harvested litchi fruit

    A Muscle Teleoperation System of a Robotic Rollator Based on Bilateral Shared Control

    Get PDF
    The approach that achieves the teleoperation between human muscle signals and the mobile robot is increasingly applied to transfer human muscle stiffness to enhance robotic performance. In this paper, we develop a mobile rollator control system applying a muscle teleoperation interface and a shared control method to enhance the obstacle avoidance in an effective way. In order to control intuitively, haptic feedback is utilized in the teleoperation interface and is integrated with EMG stiffness to provide a large composition force. Then the composition force is implemented with an artificial potential field method to keep the robotic rollator away from the obstacle in advance. This algorithm is superior to the traditional APF algorithm regardless of the required time and trajectory length. The experimental results demonstrate the effectiveness of the proposed muscle teleoperation system

    CD23 expression in mantle cell lymphoma is associated with CD200 expression, leukemic non-nodal form, and a better prognosis

    Get PDF
    Mantle cell lymphoma (MCL) is usually CD23 negative, a feature helpful in distinguishing MCL from chronic lymphocytic leukemia/small lymphocytic lymphoma. However, a subset of MCL cases can be CD23+. Limited data are available regarding the clinicopathological features and prognosis of patients with CD23+ MCL. In this study, we reviewed 798 cases of MCL and identified 103 (13%) that were CD23+ by flow cytometry, all of which were positive for cyclin D1 and/or associated with CCND1/IGH. In all cases of CD23+ MCL, CD23 expression was dim partial or dim, unlike moderate to bright CD23 expression observed in chronic lymphocytic leukemia/small lymphocytic lymphoma. The clinicopathological features and outcome of patients with CD23+ MCL were compared with 240 patients with typical MCL negative for CD23. Patients with CD23+ MCL more often had an elevated leukocyte count (33% versus 18%, P = .009), bone marrow involvement (89% versus 78%, P = .02), stage 4 disease (87% versus 77%, P = .03), and a leukemic presentation (42% versus 11%, P = .0001). CD23+ MCL was also more often positive for CD200 (17% versus. 4.6%, P = .0005) and less commonly positive for SOX11 (55% versus. 74%, P = .027). All other clinicopathological features were similar. With similar treatment regimens and observation times, patients with CD23+ MCL had a significant better overall survival (P = .02) and progression-free survival (P = .029). In conclusion, CD23 expression was observed in 13% of MCL cases and is associated with a better prognosis in patients with MCL. CD23 is associated with leukocytosis, a leukemic presentation, bone marrow involvement, CD200 expression, and a lower frequency of SOX11 positivity

    Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice

    Get PDF
    ASXL1 is mutated/deleted with high frequencies in multiple forms of myeloid malignancies, and its alterations are associated with poor prognosis. De novo ASXL1 mutations cause Bohring-Opitz syndrome characterized by multiple congenital malformations. We show that Asxl1 deletion in mice led to developmental abnormalities including dwarfism, anophthalmia, and 80% embryonic lethality. Surviving Asxl1(-/-) mice lived for up to 42 days and developed features of myelodysplastic syndrome (MDS), including dysplastic neutrophils and multiple lineage cytopenia. Asxl1(-/-) mice had a reduced hematopoietic stem cell (HSC) pool, and Asxl1(-/-) HSCs exhibited decreased hematopoietic repopulating capacity, with skewed cell differentiation favoring granulocytic lineage. Asxl1(+/-) mice also developed mild MDS-like disease, which could progress to MDS/myeloproliferative neoplasm, demonstrating a haploinsufficient effect of Asxl1 in the pathogenesis of myeloid malignancies. Asxl1 loss led to an increased apoptosis and mitosis in Lineage(-)c-Kit(+) (Lin(-)c-Kit(+)) cells, consistent with human MDS. Furthermore, Asxl1(-/-) Lin(-)c-Kit(+) cells exhibited decreased global levels of H3K27me3 and H3K4me3 and altered expression of genes regulating apoptosis (Bcl2, Bcl2l12, Bcl2l13). Collectively, we report a novel ASXL1 murine model that recapitulates human myeloid malignancies, implying that Asxl1 functions as a tumor suppressor to maintain hematopoietic cell homeostasis. Future work is necessary to clarify the contribution of microenvironment to the hematopoietic phenotypes observed in the constitutional Asxl1(-/-) mice

    Establishment and Solution of Four Variable Water Hammer Mathematical Model for Conveying Pipe

    No full text
    Transient flow in pipe is a much debated topic in the field of hydrodynamics. The water hammer effect caused by instantaneous valve closing is an important branch of transient flow. At present, the fluid density is regarded as a constant in the study of the water hammer effect in pipe. When there is gas in the pipe, the variation range of density is large, and the pressure-wave velocity should also change continuously along the pipe. This study considers the interaction between pipeline fluid motion and water hammer wave propagation based on the essence of water hammer, with the pressure, velocity, density and overflow area set as variables. A new set of water hammer calculation equations was deduced and solved numerically. The effects of different valve closing time, flow rate and gas content on pressure distribution and the water hammer effect were studied. It was found that with the increase in valve closing time, the maximum fluctuating pressure at the pipe end decreased, and the time of peak value also lagged behind. When the valve closing time increased from 5 s to 25 s, the difference in water hammer pressure was 0.72 MPa, and the difference in velocity fluctuation amplitude was 0.076 m/s. The findings confirm: the greater the flow, the greater the pressure change at the pipe end; the faster the speed change, the more obvious the water hammer effect. High-volume flows were greatly disturbed by instantaneous obstacles such as valve closing. With the increase of time, the pressure fluctuation gradually attenuated along the pipe length. The place with the greatest water hammer effect was near the valve. Under the coupling effect of time and tube length, the shorter the time and the shorter the tube length, the more obvious the pressure fluctuation. Findings also confirm: the larger the gas content, the smaller the fluctuation peak of pipe end pressure; the longer the water hammer cycle, the smaller the pressure-wave velocity. The actual pressure fluctuation value was obviously lower than that without gas, and the size of the pressure wave mainly depended on the gas content. When the gas content increased from 1% to 9%, the difference of water hammer pressure was 0.41 MPa

    Survival Dynamics and Colonization of Exogenous Probiotic Bacteria Bacillus subtilis in Aquaculture Water and Intestine of Zebra Fish (Danio rerio)

    Get PDF
    Adaptability of probiotic bacteria is an important trait for the survival and colonization in water or fish intestine and the performance of their bio-control function. Bacillus is a widely used genus of probiotic bacteria in aquaculture. However, its survival dynamics and effect on water or fish intestine is still unclear. In this study, we assessed the survival dynamics of exogenous Bacillus subtilis Bst51 and its effect on the microbial community structure in water and fish intestine by using green fluorescent protein (GFP) labeling and bacteriological methods. Results showed that GFP labeling was an efficient method for detection of the survival of B. subtilis in the water column and fish intestine. Our results showed that when administered only once, the concentration of Bst51 in water declined to one-tenth of the original concentration and reached a stable state after 24 h. This confirmed that Bst51 strain was able to survive and colonize in aquaculture water with concentrations higher than 103 CFU (Colony Forming Units)/mL. The concentration of Bst51 cells in zebra fish intestine decreased slightly and remained constant at around 5×106 CFU/g after only one treatment. The results confirmed that if Bst51 cells have a concentration of over 109 CFU/mL they can survive and colonize in zebra fish intestine

    Visual Navigation and Obstacle Avoidance Control for Agricultural Robots via LiDAR and Camera

    No full text
    Obstacle avoidance control and navigation in unstructured agricultural environments are key to the safe operation of autonomous robots, especially for agricultural machinery, where cost and stability should be taken into account. In this paper, we designed a navigation and obstacle avoidance system for agricultural robots based on LiDAR and a vision camera. The improved clustering algorithm is used to quickly and accurately analyze the obstacle information collected by LiDAR in real time. Also, the convex hull algorithm is combined with the rotating calipers algorithm to obtain the maximum diameter of the convex polygon of the clustered data. Obstacle avoidance paths and course control methods are developed based on the danger zones of obstacles. Moreover, by performing color space analysis and feature analysis on the complex orchard environment images, the optimal H-component of HSV color space is selected to obtain the ideal vision-guided trajectory images based on mean filtering and corrosion treatment. Finally, the proposed algorithm is integrated into the Three-Wheeled Mobile Differential Robot (TWMDR) platform to carry out obstacle avoidance experiments, and the results show the effectiveness and robustness of the proposed algorithm. The research conclusion can achieve satisfactory results in precise obstacle avoidance and intelligent navigation control of agricultural robots
    • 

    corecore