2,244 research outputs found
Batch Production of a Potent Small Molecule Active Pharmaceutical Ingredient
Small molecule Active Pharmaceutical Ingredients (APIs) have become increasingly relevant in cancer treatment due to their efficacy, targeted treatment, and clinical value. Commonly manufactured in a batch pharmaceutical process, APIs must satisfy Critical Quality Attributes (CQAs) including chemical purity and physical properties. This process involves a multitude of steps, components, and equipment that are optimized to produce an API in a timely and cost-efficient manner. Here, we consider the process and facility design of a batch production of Halfaxia, a new potent anti-cancer drug from Johnson & Johnson. The process begins with a reaction of a starting material and a second reagent in tetrahydrofuran (THF). Following reaction completion, THF is exchanged for ethanol in a technique known as solvent swap distillation. Next, the API undergoes dry seed crystallization in ethanol. The crystals are then filtered out using Nutsche filtration and vacuum drying, producing Halfaxia in powder form. The process involves a 4000-Liter jacketed vessel and a Nutsche filter dryer, as well as heat exchangers, pumps, and pressure vessels for storage. The process will produce 184 kg of API in 77 hours with a 99.8% conversion, which satisfies the objective of producing 100 kg of product. The facility is designed to limit operator interaction and exposure to the API and other chemical compounds that are hazardous to human health. This process design has an NPV of $488 million, an ROI of 400%, and an IRR of 332%, which proves to be very profitable. However, due to confidentiality reasons, the costs of research and development, clinical trials, and FDA approval have been ignored. J&J should pursue further laboratory-scale experimentation and re-run the models using confidential data and figures before the company makes a final decision on the implementation of this process
Recommended from our members
Combination immunotherapy induces distinct T-cell repertoire responses when administered to patients with different malignancies.
BackgroundCTLA-4 blockade with ipilimumab is Food and Drug Administration-approved for melanoma as a monotherapy and has been shown to modulate the circulating T-cell repertoire. We have previously reported clinical trials combining CTLA-4 blockade with granulocyte-macrophage colony-stimulating factor (GM-CSF) in metastatic melanoma patients and in metastatic castration resistant prostate cancer (mCRPC) patients. Here, we investigate the effect that cancer type has on circulating T cells in metastatic melanoma and mCRPC patients, treated with ipilimumab and GM-CSF.MethodsWe used next-generation sequencing of T-cell receptors (TCR) to compare the circulating T cells of melanoma and mCRPC patients receiving the same treatment with ipilimumab and GM-CSF by Wilcoxon rank sum test. Flow cytometry was utilized to investigate specific T-cell populations. TCR sequencing results were correlated with each T-cell subpopulation by Spearman's rank correlation coefficient. Of note, 14 metastatic melanoma patients had samples available for TCR sequencing and 21 had samples available for flow cytometry analysis; 37 mCRPC patients had samples available for sequencing of whom 22 have TCR data available at both timepoints; 20 of these patients had samples available for flow cytometry analysis and 16 had data available at both timepoints.ResultsWhile melanoma and mCRPC patients had similar pretreatment circulating T-cell counts, treatment induces greater expansion of circulating T cells in melanoma patients. Metastatic melanoma patients have a higher proportion of clones that increased more than fourfold after the treatment compared with mCRPC patients (18.9% vs 11.0%, p=0.017). Additionally, melanoma patients compared with mCRPC patients had a higher ratio of convergent frequency (1.22 vs 0.60, p=0.012). Decreases in clonality induced by treatment are associated with baseline CD8+ T-cell counts in both patient groups, but are more pronounced in the melanoma patients (r=-0.81, p<0.001 vs r=-0.59, p=0.02).Trial registration numbersNCT00064129; NCT01363206
Recommended from our members
Ischemic axonal injury up-regulates MARK4 in cortical neurons and primes tau phosphorylation and aggregation.
Ischemic injury to white matter tracts is increasingly recognized to play a key role in age-related cognitive decline, vascular dementia, and Alzheimer's disease. Knowledge of the effects of ischemic axonal injury on cortical neurons is limited yet critical to identifying molecular pathways that link neurodegeneration and ischemia. Using a mouse model of subcortical white matter ischemic injury coupled with retrograde neuronal tracing, we employed magnetic affinity cell sorting with fluorescence-activated cell sorting to capture layer-specific cortical neurons and performed RNA-sequencing. With this approach, we identified a role for microtubule reorganization within stroke-injured neurons acting through the regulation of tau. We find that subcortical stroke-injured Layer 5 cortical neurons up-regulate the microtubule affinity-regulating kinase, Mark4, in response to axonal injury. Stroke-induced up-regulation of Mark4 is associated with selective remodeling of the apical dendrite after stroke and the phosphorylation of tau in vivo. In a cell-based tau biosensor assay, Mark4 promotes the aggregation of human tau in vitro. Increased expression of Mark4 after ischemic axonal injury in deep layer cortical neurons provides new evidence for synergism between axonal and neurodegenerative pathologies by priming of tau phosphorylation and aggregation
The Cloud Absorption Radiometer HDF Data User's Guide
The purpose of this document is to describe the Cloud Absorption Radiometer (CAR) Instrument, methods used in the CAR Hierarchical Data Format (HDF) data processing, the structure and format of the CAR HDF data files, and methods for accessing the data. Examples of CAR applications and their results are also presented. The CAR instrument is a multiwavelength scanning radiometer that measures the angular distributions of scattered radiation
Melatonin Alters Age-Related Changes in Transcription Factors and Kinase Activation
Male mice were fed 40 ppm melatonin for 2 months prior to sacrifice at age 26 months, and compared with both 26 and 4 month-old untreated controls. The nuclear translocation of NF-κB increased with age in both brain and spleen and this was reversed by melatonin only in brain. Another transcription factor, AP-1 was increased with age in the spleen and not in brain and this could be blocked by melatonin treatment. The fraction of the active relative to the inactive form of several enabling kinases was compared. The proportion of activated ERK was elevated with age in brain and spleen but this change was unresponsive to melatonin. A similar age-related increase in glial fibrillary acidic protein (GFAP) was also refractory to melatonin treatment. The cerebral melatonin M1 receptor decreased with age in brain but increased in spleen. The potentially beneficial nature of melatonin for the preservation of brain function with aging was suggested by the finding that an age-related decline in cortical synaptophysin levels was prevented by dietary melatonin
The SKI proto-oncogene restrains the resident CD103+CD8+ T cell response in viral clearance
Acute viral infection causes illness and death. In addition, an infection often results in increased susceptibility to a secondary infection, but the mechanisms behind this susceptibility are poorly understood. Since its initial identification as a marker for resident memory CD8+ T cells in barrier tissues, the function and regulation of CD103 integrin (encoded by ITGAE gene) have been extensively investigated. Nonetheless, the function and regulation of the resident CD103+CD8+ T cell response to acute viral infection remain unclear. Although TGFβ signaling is essential for CD103 expression, the precise molecular mechanism behind this regulation is elusive. Here, we reveal a TGFβ–SKI–Smad4 pathway that critically and specifically directs resident CD103+CD8+ T cell generation for protective immunity against primary and secondary viral infection. We found that resident CD103+CD8+ T cells are abundant in both lymphoid and nonlymphoid tissues from uninfected mice. CD103 acts as a costimulation signal to produce an optimal antigenic CD8+ T cell response to acute viral infection. There is a reduction in resident CD103+CD8+ T cells following primary infection that results in increased susceptibility of the host to secondary infection. Intriguingly, CD103 expression inversely and specifically correlates with SKI proto-oncogene (SKI) expression but not R-Smad2/3 activation. Ectopic expression of SKI restricts CD103 expression in CD8+ T cells in vitro and in vivo to hamper viral clearance. Mechanistically, SKI is recruited to the Itgae loci to directly suppress CD103 transcription by regulating histone acetylation in a Smad4-dependent manner. Our study therefore reveals that resident CD103+CD8+ T cells dictate protective immunity during primary and secondary infection. Interfering with SKI function may amplify the resident CD103+CD8+ T cell response to promote protective immunity
Molecular Diagnostics and Pathology of Major Brain Tumors
Tumors of central nervous system (CNS) account for a small portion of tumors of human body, which include tumors occurring in the parenchyma of brain and spinal cord as well as their coverings. The following chapter covers some new development in some major brain tumors in both pediatric and adult populations, as well as some uncommon but diagnostic and management challenging tumors
- …