435,352 research outputs found
Schemes and estimates for the long-time numerical solution of Maxwell’s equations for Lorentz metamaterials
We consider time domain formulations of Maxwell's equations for the Lorentz model for metamaterials. The field equations are considered in two different forms which have either six or four unknown vector fields. In each case we use arguments tuned to the physical laws to derive data-stability estimates which do not require Gronwall's inequality. The resulting estimates are, in this sense, sharp. We also give fully discrete formulations for each case and extend the sharp data-stability to these. Since the physical problem is linear it follows (and we show this with examples) that this stability property is also reflected in the constants appearing in the a priori error bounds. By removing the exponential growth in time from these estimates we conclude that these schemes can be used with confidence for the long-time numerical simulation of Lorentz metamaterials.This work was supported in part by NSFC Project 11271310, NSF grant DMS-1416742, and a grant from
the Simons Foundation (#281296 to Li), in part by scheme 4 London Mathematical Society funding and in part
by the Engineering and Physical Sciences Research Council (EP/H011072/1 to Shaw)
Induced junction solar cell and method of fabrication
An induced junction solar cell is fabricated on a p-type silicon substrate by first diffusing a grid of criss-crossed current collecting n+ stripes and thermally growing a thin SiO2 film, and then, using silicon-rich chemical vapor deposition (CVD), producing a layer of SiO2 having inherent defects, such as silicon interstices, which function as deep traps for spontaneous positive charges. Ion implantation increases the stable positive charge distribution for a greater inversion layer in the p-type silicon near the surface. After etching through the oxide to parallel collecting stripes, a pattern of metal is produced consisting of a set of contact stripes over the exposed collecting stripes and a diamond shaped pattern which functions as a current collection bus. Then the reverse side is metallized
Recommended from our members
Modeling and analysis of the variability of the water cycle in the upper Rio Grande basin at high resolution
Estimating the water budgets in a small-scale basin is a challenge, especially in the mountainous western United States, where the terrain is complex and observational data in the mountain areas are sparse. This manuscript reports on research that downscaled 5-yr (1999-2004) hydrometeorological fields over the upper Rio Grande basin from a 2.5° NCEP-NCAR reanalysis to a 4-km local scale using a regional climate model [fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5), version 3]. The model can reproduce the terrain-related precipitation distribution - the trend of diurnal, seasonal, and interannual precipitation variability - although poor snow simulation caused it to overestimate precipitation and evapotranspiration in the cold season. The outcomes from the coupled model are also comparable to offline Variable Infiltration Capacity (VIC) and Land Data Assimilation System (LDAS)/Mosaic land surface simulations that are driven by observed and/or analyzed surface meteorological data. © 2007 American Meteorological Society
Recommended from our members
Modeling intraseasonal features of 2004 North American monsoon precipitation
This study examines the capabilities and limitations of the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5) in predicting the precipitation and circulation features that accompanied the 2004 North American monsoon (NAM). When the model is reinitialized every 5 days to restrain the growth of modeling errors, its results for precipitation checked at subseasonal time scales (not for individual rainfall events) become comparable with ground- and satellite-based observations as well as with the NAM's diagnostic characteristics. The modeled monthly precipitation illustrates the evolution patterns of monsoon rainfall, although it underestimates the rainfall amount and coverage area in comparison with observations. The modeled daily precipitation shows the transition from dry to wet episodes on the monsoon onset day over the Arizona-New Mexico region, and the multiday heavy rainfall (>1 mm day-1) and dry periods after the onset. All these modeling predictions agree with observed variations. The model also accurately simulated the onset and ending dates of four major moisture surges over the Gulf of California during the 2004 monsoon season. The model reproduced the strong diurnal variability of the NAM precipitation, but did not predict the observed diurnal feature of the precipitation peak's shift from the mountains to the coast during local afternoon to late night. In general, the model is able to reproduce the major, critical patterns and dynamic variations of the NAM rainfall at intraseasonal time scales, but still includes errors in precipitation quantity, pattern, and timing. The numerical study suggests that these errors are due largely to deficiencies in the model's cumulus convective parameterization scheme, which is responsible for the model's precipitation generation. © 2007 American Meteorological Society
Effects of current on vortex and transverse domain walls
By using the spin torque model in ferromagnets, we compare the response of
vortex and transverse walls to the electrical current. For a defect-free sample
and a small applied current, the steady state wall mobility is independent of
the wall structure. In the presence of defects, the minimum current required to
overcome the wall pinning potential is much smaller for the vortex wall than
for the transverse wall. During the wall motion, the vortex wall tends to
transform to the transverse wall. We construct a phase diagram for the wall
mobility and the wall transformation driven by the current
Recommended from our members
Integration, management and communication of heterogeneous design resources with WWW technologies
Recently, advanced information technologies have opened new pos-sibilities for collaborative designs. In this paper, a Web-based collaborative de-sign environment is proposed, where heterogeneous design applications can be integrated with a common interface, managed dynamically for publishing and searching, and communicated with each other for integrated multi-objective de-sign. The CORBA (Common Object Request Broker Architecture) is employed as an implementation tool to enable integration and communication of design application programs; and the XML (eXtensible Markup Language) is used as a common data descriptive language for data exchange between heterogeneous applications and for resource description and recording. This paper also intro-duces the implementation of the system and the encapsulating issues of existing legacy applications. At last, an example of gear design based on the system is il-lustrated to identify the methods and procedure developed by this research
Recommended from our members
Model performance of downscaling 1999-2004 hydrometeorological fields to the upper Rio Grande basin using different forcing datasets
This study downscaled more than five years of data (1999-2004) for hydrometeorological fields over the upper Rio Grande basin (URGB) to a 4-km resolution using a regional model [fifth-generation Pennsylvania State University-National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5, version 3)] and two forcing datasets that include National Centers for Environmental Prediction (NCEP)-NCAR reanalysis-1 (R1) and North America Regional Reanalysis (NARR) data. The long-term high-resolution simulation results show detailed patterns of hydroclimatological fields that are highly related to the characteristics of the regional terrain; the most important of these patterns are precipitation localization features caused by the complex topography. In comparison with station observational data, the downscaling processing, on whichever forcing field is used, generated more accurate surface temperature and humidity fields than the Eta Model and NARR data, although it still included marked errors, such as a negative (positive) bias toward the daily maximum (minimum) temperature and overestimated precipitation, especially in the cold season. Comparing the downscaling results forced by the NARR and R1 with both the gridded and station observational data shows that under the NARR forcing, the MM5 model produced generally better results for precipitation, temperature, and humidity than it did under the R1 forcing. These improvements were more apparent in winter and spring. During the warm season, although the use of NARR improved the precipitation estimates statistically at the regional (basin) scale, it substantially underestimated them over the southern upper Rio Grande basin, partly because the NARR forcing data exhibited warm and dry biases in the monsoon-active region during the simulation period and improper domain selection. Analyses also indicate that over mountainous regions, both the Climate Prediction Center's (CPC's) gridded (0.25°) and NARR forcings underestimate precipitation in comparison with station gauge data. © 2008 American Meteorological Society
- …