52 research outputs found

    Effects of sustained loading and corrosion on the performance of reinforced concrete beams

    Get PDF
    This paper presents an experimental investigation on the behaviour of reinforced concrete (RC) beams under simultaneous loading and reinforcement corrosion. Corrosion of reinforcements within beams were created by an accelerated method using a 5% NaCl solution combined with a constant impressed current. Three different corrosion durations at 5, 10 and 20 days and four levels of sustained loading at 0, 15%, 30% and 60% of ultimate loading capacity were applied to the beams. Totally 13 RC beams were tested to examine the corrosion of reinforcements, cracking of beams, and structural behaviour of the corroded beams. Test results indicate that corrosion of reinforcements increases with the sustained loading but undergoes an initially increasing rate followed by a decreasing rate. Higher loading level and longer corrosion period are prone to cause the brittle failure of RC beams. Increasing the sustained loading extends the longitudinal crack but not the crack width. The joint effects of sustained loading and corrosion duration, compared to the single effect of either one factor, are more significant on the performance of RC beams in terms of corrosion of reinforcements, failure mode, ultimate loading capacity, and deformation ability. At a higher sustained loading level, beams’ ultimate loading capacity and deformation ability decrease more significantly with the corrosion periods. It is also found that a lower loading increases the flexural stiffness of RC beams, but a higher loading level instead decreases it

    Theoretical foundations of studying criticality in the brain

    Full text link
    Criticality is hypothesized as a physical mechanism underlying efficient transitions between cortical states and remarkable information processing capacities in the brain. While considerable evidence generally supports this hypothesis, non-negligible controversies persist regarding the ubiquity of criticality in neural dynamics and its role in information processing. Validity issues frequently arise during identifying potential brain criticality from empirical data. Moreover, the functional benefits implied by brain criticality are frequently misconceived or unduly generalized. These problems stem from the non-triviality and immaturity of the physical theories that analytically derive brain criticality and the statistic techniques that estimate brain criticality from empirical data. To help solve these problems, we present a systematic review and reformulate the foundations of studying brain criticality, i.e., ordinary criticality (OC), quasi-criticality (qC), self-organized criticality (SOC), and self-organized quasi-criticality (SOqC), using the terminology of neuroscience. We offer accessible explanations of the physical theories and statistic techniques of brain criticality, providing step-by-step derivations to characterize neural dynamics as a physical system with avalanches. We summarize error-prone details and existing limitations in brain criticality analysis and suggest possible solutions. Moreover, we present a forward-looking perspective on how optimizing the foundations of studying brain criticality can deepen our understanding of various neuroscience questions

    Protein-energy malnutrition and worse outcomes after major cancer surgery: A nationwide analysis

    Get PDF
    BackgroundProtein-energy malnutrition (PEM) has been recognized as a poor prognostic factor in many clinical issues. However, nationwide population studies concerning the impact of PEM on outcomes after major cancer surgery (MCS) are lacking. We aimed to evaluate the postoperative outcomes associated with PEM following MCS.MethodsBy using the Nationwide Inpatient Sample database, data of patients undergoing MCS including colectomy, cystectomy, esophagectomy, gastrectomy, hysterectomy, lung resection, pancreatectomy, or prostatectomy were analyzed retrospectively from 2009 to 2015, resulting in a weighted estimate of 1,335,681 patients. The prevalence trend of PEM, as well as mortality and major complications after MCS were calculated. Multivariable regression analysis was applied to estimate the impact of PEM on postoperative outcomes after MCS.ResultsPEM showed an estimated annual percentage increase of 7.17% (95% confidence interval (CI): 4-10.44%) from 2009 to 2015, which contrasts with a 4.52% (95% CI: -6.58–2.41%) and 1.21% (95% CI: -1.85–0.56%) annual decrease in mortality and major complications in patients with PEM after MCS. PEM was associated with increased risk of mortality (odds ratio (OR)=2.26; 95% CI: 2.08-2.44; P < 0.0001), major complications (OR=2.46; 95% CI: 2.36-2.56; P < 0.0001), higher total cost (35814[35814 [22292, 59579]vs.59579] vs. 16825 [11393,11393, 24164], P < 0.0001), and longer length of stay (14 [9-21] days vs. 4 [2-7] days, P < 0.0001), especially in patients underwent prostatectomy, hysterectomy and lung resection.ConclusionsPEM was associated with increased worse outcomes after major cancer surgery. Early identification and timely medical treatment of PEM for patients with cancer are crucial for improving postoperative outcomes

    Rapid diagnosis of new and relapse tuberculosis by quantification of a circulating antigen in HIV-infected adults in the Greater Houston metropolitan area

    Get PDF
    Abstract Background HIV-associated immune defects inhibit tuberculosis (TB) diagnosis, promote development of extrapulmonary TB and paucibacillary pulmonary TB cases with atypical radiographic features, and increase TB relapse rates. We therefore assessed the diagnostic performance of a novel assay that directly quantitates serum levels of the Mycobacterium tuberculosis (Mtb) virulence factor 10-kDa culture filtrate protein (CFP-10) to overcome limitations associated with detecting Mtb bacilli in sputum or tissue biopsies. Methods This study analyzed HIV-positive adults enrolled in a large, population-based TB screening and surveillance project, the Houston Tuberculosis Initiative, between October 1995 and September 2004, and assigned case designations using standardized criteria. Serum samples were trypsin-digested and immunoprecipitated for an Mtb-specific peptide of CFP-10 that was quantified by liquid chromatography-mass spectrometry for rapid and sensitive TB diagnosis. Results Among the 1053 enrolled patients, 110 met all inclusion criteria; they included 60 tuberculosis cases (12 culture-negative TB), including 9 relapse TB cases, and 50 non-TB controls, including 15 cases with history of TB. Serum CFP-10 levels diagnosed 89.6% (77.3–96.5) and 66.7% (34.9–90.1) of culture-positive and culture-negative TB cases, respectively, and exhibited 88% (75.7–95.5) diagnostic specificity in all non-TB controls. Serum antigen detection and culture, respectively, identified 85% (73.4–92.9) and 80.0% (67.3–88.8) of all 60 TB cases. Conclusions Quantitation of the Mtb virulence factor CFP-10 in serum samples of HIV-infected subjects diagnosed active TB cases with high sensitivity and specificity and detected cases missed by the gold standard of Mtb culture. These results suggest that serum CFP-10 quantitation holds great promise for the rapid diagnosis of suspected TB cases in patients who are HIV-infected

    Tensile and flexural properties of ultra high toughness cemontious composite

    No full text
    The tensile and flexural properties of polyvinyl alcohol (PVA) fiber reinforced ultra high toughness cementitious composite (UHTCC) were investigated. The composite, tested at the age of 14 d, 28 d and 56 d, shows extremely remarkable pseudo strain hardening behavior, saturated multiple cracking and ultra high ultimate strain capacity above 4\% under uniaxial loading. Also, the corresponding crack widths are controlled under 50 mu m even at 56 days age. In the third point bending tests on thin plate specimens, the composite shows ultra high flexural ductility and multiple cracking on the tension surface. The high ultimate flexural strength/first tensile strength ratio of about 5 verifies the pseudo strain hardening behavior of UHTCC. SEM observation on fracture surfaces provides indirect evidence of optimal design for the composite

    Durability of the Bond between CFRP and Concrete Exposed to Thermal Cycles

    No full text
    The bond between carbon fiber reinforced polymer (CFRP) and concrete is significantly and adversely affected by thermal cycles in air and water. In the present study, the effects of thermal cycles in air or water on the bond performance between CFRP and concrete were examined. A single-lap shear test was adopted to evaluate the performance of the CFRP⁻concrete bond. A number of 270 thermal cycles in air increased the interfacial fracture energy of the CFRP plate⁻ and CFRP sheet⁻concrete by 35% and 20%, respectively while 270 thermal cycles in water reduced the interfacial fracture energy of the CFRP plate⁻ and CFRP sheet⁻concrete by 9% and 46%, respectively. Thermal cycles in water caused the failure mode to change from concrete cohesive failure to primer⁻concrete interfacial debonding. The failure modes of CFRP⁻concrete exposed to thermal cycles in air still occurred in concrete. A reduction factor for the CFRP⁻concrete structure for thermal cycles in water was proposed
    • …
    corecore