2,538 research outputs found

    Scenarios for applying RFID technology in construction project management

    Get PDF
    Radio Frequency Identification (RFID) technology has been widely applied in various areas such as retail, electronic transaction, logistic and supply chain management, scientific research, security, etc. It has brought about great benefits in these areas through improving real-time information visibility and traceability. However, a widespread application of RFID in the construction industry has not taken place. One possible reason is that construction practitioners may have not been fully informed of its potentials. This paper aims to investigate various scenarios that can illustrate the uses of RFID technology in construction project management. The research starts from a brief summary of recent developments of RFID technology in different industrial sectors including construction. 16 researchers were split into 3 groups to investigate how RFID can be used in the management of materials, men, and machinery (M 3) for construction projects. Perspectives for future studies are proposed in order to fully realise the potentials. The research encourages a wider adoption of RFID technology in improving current PM practices. It also provides academia with a platform for further exploring the innovative uses of RFID technology in construction. © 2010 Elsevier B.V.postprin

    Mobility improvement of n-MOSFET's with nitrided gate oxide by backsurface Ar+ bombardment

    Get PDF
    Low-energy (550 eV) argon-ion beam was used to bombard directly, the backsurface of nitrided n-MOSFET's after the completion of all conventional nMOS processing steps. The interface characteristics and inversion layer mobility of the MOS devices were investigated. The results show that, as bombardment time increases, interface state density and fixed charge density decrease first, and then the change slows down or even turns around. Correspondingly, the carrier mobility and drain conductance of the MOS devices are found to enhance first, and then saturate or turn around. Therefore, this simple technique, which is readily compatible with existing IC processing, is effective for restoring some of the lost device performance associated with gate-oxide nitridation.published_or_final_versio

    A study of various oxide/silicon interfaces by Ar + backsurface bombardment

    Get PDF
    A low-energy (550 eV) argon beam is used to bombard the backsurfaces of 6 kinds of metal–oxide–semiconductor capacitors, and the resulting effects on their interface characteristics are then investigated. The gate oxide of these capacitors includes thermal oxide, trichloroethyene (TCE) oxide, NH3-nitrided oxide, reoxidized-nitrided oxide, rapid-thermal-nitrided oxide, and N2O-nitrided oxide. Measurements show that for bombardment times up to 45 min the interface-state density of all the devices, in general, decreases with increasing bombardment time/dose, and the midgap energy at the silicon surface tends to rise. Moreover, the bombardment is more effective in reducing acceptor-type than donor-type interface states. On the other hand, the change of fixed-charge density is more complex. For TCE, N2O-nitrided and reoxidized-nitrided oxides, fixed-charge density decreases initially with increasing bombardment time, but then increases, while the trend is reversed for the other gate oxides. A model with stress compensation and weak bond breaking is suggested to explain the results. ©1999 American Institute of Physics.published_or_final_versio

    Effects of chemical composition on humidity sensitivity of Al/BaTiO3/Si structure

    Get PDF
    Argon-ion-beam sputtering technique has been applied to deposit barium titanate (BaTiO3) films on silicon wafers at room temperature under vacuum, and then Al/BaTiO3/Si structures were fabricated. Results show that the current and capacitance of these devices are sensitive to the change of relative humidity at room temperature, and saturation absorption (response) time as well as humidity sensitivity of the devices depend on the chemical composition of the BaTiO3 films. For higher annealing temperature and longer annealing time, the oxygen composition increases while fixed charge density decreases. These changes result in lower humidity sensitivity and longer response time.© 1995 American Institute of Physics.published_or_final_versio

    Influence of backsurface argon bombardment on SiO2-Si interface characteristics

    Get PDF
    A low-energy (550 eV) argon-ion beam was used to directly bombard the backsurface of polysilicon-gate metal-oxide-semiconductor (MOS) capacitors after the completion of all conventional processing steps. The interface characteristics of the MOS capacitors were investigated. The results show that, as the bombardment dose increases, the active dopant concentration near the oxide-semiconductor interface gets higher; maximum midgap energy increases; and interface-state density becomes lower. This simple technique is compatible with existing integrated-circuit processing, and can easily improve the interface characteristics, and therefore the electrical characteristics of MOS devices. © 1996 American Institute of Physics.published_or_final_versio

    简单面目标与带孔洞面目标间拓扑关系的层次表达方法

    Get PDF
    Author name used in this publication: 邓敏Author name used in this publication: LI Zhi-linAuthor name used in this publication: 李光强2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Cloud service-oriented dashboard for work cell management in RFID-enabled ubiquitous manufacturing

    Get PDF
    This article aims at developing a service-oriented dashboard for operators and supervisors of manufacturing shopfloor work-cells to realize information visibility and traceability effectively with cloud and RFID (radio frequency identification) technologies. The work is based on a case of an illustrative assembly line consisting of a number of work cells. The dashboard is deployed for facilitating assembly operations in ubiquitous manufacturing environment. The utilization of the system leads to significant improvements in work cell productivity and quality, operational flexibility and decision efficiency. © 2013 IEEE.published_or_final_versio

    Arabidopsis thaliana VDAC2 involvement in salt stress response pathway

    Get PDF
    Soil salinity seriously affects plants distribution and yield, while salt stress induces SOS genes, and voltage-dependent anion channels (VDAC) and a mitochondrial porin, are induced too. In this paper, phenotypes of AtVDAC2 transgenic lines and wild type (RLD) were analyzed. It was found that AtVDAC2 over-expressing transgenic plants were more sensitive to NaCl, and produced more H2O2 in the NaCl treatment. Also, to find the inner reason, the salt overly sensitive gene 3 (SOS3) expression level was changed with the expression of AtVDAC2. So, it was conjectured that the signal of salt stress response was first sent to AtVDAC2, then AtVDAC2 expression improved, leading to the down-stream signals changes, such as accumulation of H2O2 and improved expression of SOS3. So, it was found that in the over-expression of transgenic lines with AtVDAC2 up-regulation, SOS3 expression increased significantly, and in the inhibited-expressing lines, it was vice versa. In summary, AtVDAC2 was involved in salt stress signaling pathway, and it regulated SOS3 gene expression.Key words: Arabidopsis thaliana, voltage-dependent anion channels (VDAC), salt stress, signaling pathway

    Curcumin Reduces Tumour Necrosis Factor-Enhanced Annexin V-Positive Microparticle Release in Human Vascular Endothelial Cells

    Get PDF
    PURPOSE: Circulating microparticles have been highlighted as biomarkers of cardiovascular disease state and progression. The aim of this study was to evaluate the effects of curcumin on microparticle release from endothelial cells undergoing TNF-induced cell activation and apoptosis. METHODS: This study evaluated the effects of curcumin on microparticle release, cytotoxicity, apoptosis, cell adhesion molecule expression and monocyte adhesion in EAhy926 human endothelial cells RESULTS: The results showed that the numbers of microparticles were increased by tumour necrosis factor (TNF) or the combination of TNF and cycloheximide (CHX). Curcumin attenuated microparticle release caused by TNF or TNF plus CHX treatments. The pretreatment by curcumin not only negated the accelerated cell death and apoptosis caused by TNF and CHX, but also diminished TNF-induced cell activation, as assessed by reduced surface expression of intercellular adhesion molecule 1, and adhesion of monocytes to endothelial monolayers CONCLUSION: Curcumin reduced microparticle release from endothelial cells undergoing cell activation and apoptosis, which supports its protective role in TNF-associated endothelial dysfunction, and highlights its potential use as a nutraceutical agent for vascular inflammatory diseases

    Stabilization of wave systems with input delay in the boundary control

    Get PDF
    2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore