1,516 research outputs found

    Predicting upper limb discomfort for plastic surgeons wearing loupes based on multi-objective optimization

    Get PDF
    Plastic surgeons report neck, shoulder and back pain when wearing head-mounted magnifiers (loupes) during operations. There will be many factors contributing to such pain. In order to explore these factors this paper developed a novel application of Multi-objective Optimization (MOO) which used postural constraints on anthropometric models to determine Rapid Upper Limb Analysis (RULA) scores. For the pain experienced by surgeons wearing loupes, the analyses showed that adjusting the height of table and suitable working distance of loupes for surgeon could decrease the flexion angle of neck. The results demonstrated that it is possible to predict RULA scores for the range of postures and propose that this approach could be used to quantify risk assessment, particularly in the selection and fitting of loupes and in the specification of working height for surgeons

    Rapid construction of mycobacterial mutagenesis vectors using ligation-independent cloning

    Get PDF
    Targeted mutagenesis is one of the major tools for determining the function of a given gene and its involvement in bacterial pathogenesis. In mycobacteria, gene deletion is often accomplished by using allelic exchange techniques that commonly utilise a suicide delivery vector. We have adapted a widely-used suicide delivery vector (p1NIL) for cloning two flanking regions of a gene using ligation independent cloning (LIC). The pNILRB plasmid series produced allow a faster, more efficient and less laborious cloning procedure. In this paper we describe the making of pNILRB5, a modified version of p1NIL that contains two pairs of LIC sites flanking either a sacB or a lacZ gene. We demonstrate the success of this technique by generating 3 mycobacterial mutant strains. These vectors will contribute to more high-throughput methods of mutagenesis

    A neuronal circuit driven by GLP-1 in the olfactory bulb regulates insulin secretion

    Get PDF
    Glucagon-like peptide 1 (GLP-1) stimulates insulin secretion and holds significant pharmacological potential. Nevertheless, the regulation of energy homeostasis by centrally-produced GLP-1 remains partially understood. Preproglucagon cells, known to release GLP-1, are found in the olfactory bulb (OB). We show that activating GLP-1 receptors (GLP-1R) in the OB stimulates insulin secretion in response to oral glucose in lean and diet-induced obese male mice. This is associated with reduced noradrenaline content in the pancreas and blocked by an α2-adrenergic receptor agonist, implicating functional involvement of the sympathetic nervous system (SNS). Inhibiting GABAA receptors in the paraventricular nucleus of the hypothalamus (PVN), the control centre of the SNS, abolishes the enhancing effect on insulin secretion induced by OB GLP-1R. Therefore, OB GLP-1-dependent regulation of insulin secretion relies on a relay within the PVN. This study provides evidence that OB GLP-1 signalling engages a top-down neural mechanism to control insulin secretion via the SNS
    corecore