62 research outputs found

    Streamflow Pattern Variations Resulting from Future Climate Change in Middle Tianshan Mountains Region in China

    Full text link
    In arid and semi-arid regions of North West china, glacier-melt, seasonal snowmelt and rainfall are the primary sources of flow in the rivers that originate from alpine areas. Spring and summer peak flow resulting from snowmelt and rainfall, respectively, are the main characteristics of streamflow pattern. Because of the damages caused by the spring and summer peak flow, a better understanding of the streamflow pattern variation under future climate warming is crucial. To analyze the variation of streamflow pattern under climate warming, the Kaidu River and the Manasi River watersheds in northern and southern slopes of Middle Tianshan Mountains, located in Xinjiang were selected as study areas. These watersheds receive water from water sources in different proportions. A modified hydrological model was forced with metrological data from CIMP5 data set and the streamflow in Kaidu and Manasi River watersheds were simulated. The results indicate that one-peak-flow pattern is projected to turn to the two-peak-flow pattern in the Manasi River watershed in the future. The two-peak flow pattern will continue in the Kaidu River watershed, but the dominant peak flow will shift from summer to spring in future. This study provides useful information for water resources managers to take different actions to reduce damages caused by spring and summer peak flow under future climate warming

    Rational design of dibenzo[a,c]phenazine-derived isomeric thermally activated delayed fluorescence luminophores for efficient orange-red organic light-emitting diodes

    Get PDF
    It is an immense challenge to develop efficient long-wavelength (orange-to-red) thermally activated delayed fluorescence (TADF) materials due to the increasing nonradiative decay rates following the energy-gap law. Herein, two pairs of asymmetric isomers; DPyPzTPA and TPAPzDPy, and PyPzDTPA and DTPAPzPy based on electron-deficient moieties dibenzo[a,c]phenazine (Pz) and pyridine (Py) combined with electron-donor units of triphenylamine (TPA) were designed and synthesized. Their photophysical properties could be finely modulated by changing the position and number of Py groups as well as TPA fragments onto Pz cores. DPyPzTPA and DTPAPzPy possess much more rigidity and thus less geometry relaxation and non-radiative decay between ground states and excited states than those of PyPzDTPA and TPAPzDPy. Intriguingly, DPyPzTPA exhibits the highest relative photoluminescence quantum yield (ΦPL) and the fastest reverse intersystem crossing (rISC) rate among them owing to relatively stronger rigidity and spin-orbit coupling (SOC) interactions between the lowest singlet (S1) and energetically close-lying excited triplet state and therefore, the device showed the highest maximum external quantum efficiency (EQEmax) of 16.6% (60.9 lm/W, 53.3 cd/A) with Commission Internationale de I'Eclairage (CIE) coordinates of (0.43, 0.55), peak wavelength 556 nm. In stark contrast, due to its lower rigidity and extremely weak delayed fluorescence (DF) characteristic and thus the much lower ΦPL, TPAPzDPy-based devices are only half as efficient (30.8 lm/W, 27.5 cd/A, 8.3% EQE) despite the isomers possessing equal singlet-triplet energy gaps (ΔEST) of 0.43 eV. On the other hand, the device based on DTPAPzPy also demonstrated a strongly enhanced performance (59.1 lm/W, 52.7 cd/A, 16.1% EQE) than its isomer PyPzDTPA-based device (39.5 lm/W, 35.2 cd/A, 10.3% EQE). This work explicitly implicates that the asymmetric and isomeric molecular design is a potential strategy for promoting the development of highly efficient long-wavelength TADF materials

    The value of DCE- MRI of the breast as a diagnostic tool in assessing amorphous calcifications in screening mammography

    Get PDF
    PurposeTo evaluate the diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging in differentiating benign and malignant amorphous calcifications.MethodsThis study included 193 female patients with 197 suspicious amorphous calcifications detected on screening mammography. The patients’ demographics, clinical follow-up, imaging, and pathology outcomes were reviewed, and sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of DCE-MRI were calculated.ResultsOf 197 lesions (193 patients) included in the study, 50 (25.4%) were histologically proved to be malignant. DCE-MRI based on breast imaging report and diagnosis system (BI-RADS) had a sensitivity of 94.4%, specificity of 85.7%, PPV of 69.1%, and NPV of 97.7% for the detection of malignant amorphous calcifications. Notably, diagnosis solely based on the presence or absence of DCE-MRI enhancement showed the same sensitivity but significantly decreased specificity (44.8%, p < 0.001) and PPV (44.8%, p < 0.001). In patients with a minimal or mild degree of background parenchymal enhancement (BPE), the sensitivity, specificity, PPV, and NPV increased to 100%, 90.6%, 78.6%, and 100%, respectively. However, in patients with a moderate degree of BPE, MRI resulted in three false negatives of ductal carcinoma in situ (DCIS). Overall, the addition of DCE-MRI detected all invasive lesions and could decrease unnecessary biopsy by 65.5%.ConclusionDCE-MRI based on BI-RADS has the potential to improve the diagnosis of suspicious amorphous calcifications and avoid unnecessary biopsy, especially for those with low-degree BPE

    Snow depth reconstruction over last century : trend and distribution in the Tianshan Mountains, China

    No full text
    Clarifying the long-term variations in snow depth is important for hydrological, meteorological and ecological implications. However, the short period of snow depth records in the mountains has made the assessment of regional long-term variation of snow depth difficult. Based on reanalysis datasets from 1901 to 2014 as well as observational data from 1961 to 2014, this study applied the artificial neural networks (ANN) method to reconstruct the historical snow depths in the Tianshan Mountains of China from 1901 to 1960. The variations in monthly snow depth were analyzed during the periods of 1901-1960, 1961-2014, and 1901-2014 as historical, observed, and overall periods, respectively. The results indicated that the reconstructed snow depths captured the long-term variation and spatial distribution in the study area. For temporal scale, increases in snow depth were detected in the southern and eastern Tianshan Mountains during all three periods. The trends in snow depth indicated an increase in the western, northern and overall Tianshan Mountains during the periods of 1901-1960 and 1961-2014, but showed a decrease during the overall period of 1901-2014. The difference in variation of snow depth trends in different temporal scales indicates that the time scale of snow depth increase is decadal rather than centennial. For spatial scale, higher values of snow depth occurred in the western and northern Tianshan Mountains, while lower ones appeared in the southern and eastern Tianshan Mountains. In addition, the increasing trend in the reconstructed snow depth was more profound with increased elevation in the Tianshan Mountains during 1901-1960, with the smallest increasing rate at the elevation of 1000 m-1500 m. Although some uncertainties exist within the reconstruction, this work proposed a method for developing historical snow depth for observation-limited areas, which provided additional data for hydrological and ecological simulation. The results also allow us to achieve a better understanding of regional climate change

    Application of bioinformatics to optimization of serum proteome in oral leukoplakia and oral squamous cell carcinoma

    Get PDF
    Intervention to the evolution and metastasis of oral squamous cell carcinoma (OSCC) from oral leukoplakia (OLK) out of normal mucosa is currently far from ultimate. New technologies and insights are reckoned on for etiology and clinical protocol of OSCC and mucosa lesions. SELDI-TOF-MS technology, Support vector machine, Discriminate Analysis, and CM10 protein chip were applied to study the sera proteomes of 32 healthy volunteers, 6 patients with oral mucosa leukoplakia, 28 OSCC patients, and 8 patients with metastatic OSCC. Ratios of protein mass to its charge (m/z) showed in valve peak value were delivered and discriminated out of the huge amount of protein data as group markers for identifications. Protein peak values 4181 and 4651 were high in volunteers serum while low in patients with OLK, the sensitivity of which was 100.00% (32/32), specificity was 83.33%(5/6), accuracy was 97.37%(37/38). And m/z 4162, 6886 of 87.82, 92.86 and 66.67%; 4289, 5661, 6195, 4352, 5072 of 97.22, 100.00 and 87.5% were discriminates between OLK and local OSCC, between local OSCC and regionally metastatic OSCC, respectively. Conclusively, researches are encouraged to launch a proteomics assistance and guidance in modern molecular diagnostic approaches for understanding and controlling the mucosa lesions especially in conquering the malignant progress.Keywords: Oral squamous cell carcinoma (OSCC); oral leukoplakia (OLK), ZUCI-PDAS (Zhejiang University Cancer Institute ProteinChip Data Analysis System), bioinformatics technology, discriminate analysis, proteomes of optimizationAfrican Journal of Biotechnology, Vol 13(19), 2084-208

    Antifouling Ability of Hydrophilic PVDF-TiO

    No full text
    The PVDF flat-membrane was modified by hydrophilic nano-TiO2, which blending by ultrasonication and mechanical stirring pretreatment in phase inversion method. To evaluate the permeate productivity and anti-fouling capacity of protein solution, both the critical flux (JCW) and threshold flux (JTH) of PVDF and PVDF-TiO2 membrane were firstly measured by Advanced Constant Pressure-step Method in cross-flow filtration apparatus. Some evaluation indicators were utilized to analyze the results, such as Flux vs. Time and TMP vs. Time Curves, flux decline rate (dFlux/dt) and TMP-Fluxave curve. Two type fluxes were compared, results exhibited that hydrophilic PVDF-TiO2 modified membrane possessed a higher level of both Jcw and JTH and better anti-protein fouling ability after testing by Advanced Constant Pressure-step Method

    Vibration Separation Methodology Compensated by Time-Varying Transfer Function for Fault Diagnosis of Non-Hunting Tooth Planetary Gearbox

    No full text
    Due to planetary movement of planet gears, the vibration signal perceived by a stationary sensor is modulated and difficult to diagnose. This paper proposed a vibration separation methodology compensated by a time-varying transfer function (TVTF-VS), which is a further development of the vibration separation (VS) method in the diagnosis of non-hunting tooth planetary gearboxes. On the basis of VS, multi-teeth VS is proposed to extract and synthesize the meshing signal of a planet gear using a single transducer. Considering the movement regularity of a planetary gearbox, the time-varying transfer function (TVTF) is represented by a generalized expression. The TVTF is constructed using a segment of healthy signal and an evaluation indicator is established to optimize the parameters of the TVTF. The constructed TVTF is applied to overcome the amplitude modulation effect and highlight fault characteristics. After that, experiments with baseline, pitting, and compound localized faults planet gears were conducted on a non-hunting tooth planetary gearbox test rig, respectively. The results demonstrate that incipient failure on a planet gear can be detected effectively, and relative location of the local faults can be determined accurately

    A Novel Approach to Develop Lager Yeast with Higher NADH Availability to Improve the Flavor Stability of Industrial Beer

    No full text
    Flavor stability is important for beer quality and extensive efforts have been undertaken to improve this. In our previous work, we proved a concept whereby metabolic engineering lager yeast with increased cellular nicotinamide adenine dinucleotide hydride (NADH) availability could enhance the flavor stability of beer. However, the method for breeding non-genetically modified strains with higher NADH levels remains unsolved. In the current study, we reported a novel approach to develop such strains based on atmospheric and room temperature plasma (ARTP) mutagenesis coupled with 2,4-dinitrophenol (DNP) selection. As a result, we obtained a serial of strains with higher NADH levels as well as improved flavor stability. For screening an optimal strain with industrial application potential, we examined the other fermentation characteristics of the mutants and ultimately obtained the optimal strain, YDR-63. The overall fermentation performance of the strain YDR-63 in pilot-scale fermentation was similar to that of the parental strain YJ-002, but the acetaldehyde production was decreased by 53.7% and the resistance staling value of beer was improved by 99.8%. The forced beer aging assay further demonstrated that the favor stability was indeed improved as the contents of 5-hydroxymethylfurfural in YDR-63 was less than that in YJ-002 and the sensory notes of staling was weaker in YDR-63. We also employed this novel approach to another industrial strain, M14, and succeeded in improving its flavor stability. All the findings demonstrated the efficiency and versatility of this new approach in developing strains with improved flavor stability for the beer industry

    A Microfluidic Cell Co-Culture Chip for the Monitoring of Interactions between Macrophages and Fibroblasts

    No full text
    Macrophages and fibroblasts are two types of important cells in wound healing. The development of novel platforms for studying the interrelationship between these two cells is crucial for the exploration of wound-healing mechanisms and drug development. In this study, a microfluidic chip composed of two layers was designed for the co-culturing of these two cells. An air valve was employed to isolate fibroblasts to simulate the wound-healing microenvironment. The confluence rate of fibroblasts in the co-culture system with different macrophages was explored to reflect the role of different macrophages in wound healing. It was demonstrated that M2-type macrophages could promote the activation and migration of fibroblasts and it can be inferred that they could promote the wound-healing process. The proposed microfluidic co-culture system was designed for non-contact cell–cell interactions, which has potential significance for the study of cell–cell interactions in biological processes such as wound healing, tumor microenvironment, and embryonic development
    • …
    corecore