6,878 research outputs found

    VIENA2: A Driving Anticipation Dataset

    Full text link
    Action anticipation is critical in scenarios where one needs to react before the action is finalized. This is, for instance, the case in automated driving, where a car needs to, e.g., avoid hitting pedestrians and respect traffic lights. While solutions have been proposed to tackle subsets of the driving anticipation tasks, by making use of diverse, task-specific sensors, there is no single dataset or framework that addresses them all in a consistent manner. In this paper, we therefore introduce a new, large-scale dataset, called VIENA2, covering 5 generic driving scenarios, with a total of 25 distinct action classes. It contains more than 15K full HD, 5s long videos acquired in various driving conditions, weathers, daytimes and environments, complemented with a common and realistic set of sensor measurements. This amounts to more than 2.25M frames, each annotated with an action label, corresponding to 600 samples per action class. We discuss our data acquisition strategy and the statistics of our dataset, and benchmark state-of-the-art action anticipation techniques, including a new multi-modal LSTM architecture with an effective loss function for action anticipation in driving scenarios.Comment: Accepted in ACCV 201

    Calcium regulation of carbohydrate modification in sorghum

    Get PDF
    Two improved Nigeria sorghum cultivars (KSV 8 and ICSV 400) were used to evaluate the effects of steep water Ca2+ treatment on carbohydrate modification in sorghum. The response of all the carbohydrate mobilization indicators evaluated [- and - amylases, diastatic activity (DP), extract andcold water soluble carbohydrates (CWS-carbohydrates)], to steep water Ca2+ treatment was highly significantly (p 0.001) cultivar and steep water Ca2+ treatment dependent. In contrast to KSV 8, Ca2+ treatment generally caused significant repression of -amylase development in ICSV 400. Development of -amylolytic activity in KSV 8 was however, significantly repressed by Ca2+ treatment. Interestingly, - amylase activity constituting well over 80% of total diastatic activity was attained in ICSV 400 grainssubjected to 100 ppm Ca2+ treatment. Hot water extract (HWE) showed statistically insignificant (p 0.1) linear variation with Ca2+ treatment. Although Ca2+ treatment significantly (p .001) repressed  CWS carbohydrates in both cultivars, significantly higher CWS-carbohydrates and HWE were released in ICSV 400 for each DP unit than the corresponding DP in KSV 8 malts would permit. Thus, suggesting important roles for factors other than DP, possibly proteolysis, in determining HWE and  CWS carbohydrates. The benefits of reduced kernel growth and malting loss were neutralized by the general repression of carbohydrate modification indices for both cultivars

    The effects of calcium regulation of endosperm reserve protein mobilization of the Nigeria sorghum cultivars, ICSV 400 and KSV 8 during malting

    Get PDF
    The effects of steep liquor calcium ion on sorghum endosperm reserve protein mobilization were evaluated using two improved Nigeria sorghum cultivars (ICSV 400 and KSV 8). The key protein modification factors evaluated were free amino nitrogen (FAN), total non protein nitrogen (TNPN) and soluble protein of cold water extract (CWS-P). Ca2+ treatment highly significantly (P < 0.001) repressed FAN development in both sorghum cultivars ICSV 400 and KSV 8. TNPN accumulation significantly enhanced in ICSV 400 by Ca2+ treatment in contrast to KSV8 malts which showed 23 to 69% repression. Similarly, Ca2+ treatment was effective in stimulating peptide accumulation in ICSV 400 at all levels of treatment indicating that the enhancement of TNPN accumulation in this cultivar was derived mainly from the stimulation of peptide accumulation. KSV 8 in contrast showed highly significant repression of peptide accumulation. Protein solubilisation, soluble protein accumulation and cold water soluble protein modification in both cultivars were all highly significantly repressed by Ca2+ treatment; although, ICSV 400 appeared to be better modified. Carboxypeptidase development was stimulated significantly by Ca2+ treatment in both cultivars. Existence of multiple high points in  carboxypeptidase activity suggests heterogeneity of this enzyme in sorghum while Ca2+ treatment caused reduced proteinase development in ICSV 400, the enzyme activity was enhance in KSV 8 albeit marginally.Key words: Sorghum malt, steep water Ca2+ treatment, modification, free amino nitrogen, total non protein nitrogen, carboxypeptidase

    Fission yeast mitochondria are distributed by dynamic microtubules in a motor-independent manner

    Get PDF
    The cytoskeleton plays a critical role in regulating mitochondria distribution. Similar to axonal mitochondria, the fission yeast mitochondria are distributed by the microtubule cytoskeleton, but this is regulated by a motor-independent mechanism depending on the microtubule associated protein mmb1p as the absence of mmb1p causes mitochondria aggregation. In this study, using a series of chimeric proteins to control the subcellular localization and motility of mitochondria, we show that a chimeric molecule containing a microtubule binding domain and the mitochondria outer membrane protein tom22p can restore the normal interconnected mitochondria network in mmb1-deletion (mmb1∆) cells. In contrast, increasing the motility of mitochondria by using a chimeric molecule containing a kinesin motor domain and tom22p cannot rescue mitochondria aggregation defects in mmb1∆ cells. Intriguingly a chimeric molecule carrying an actin binding domain and tom22p results in mitochondria associated with actin filaments at the actomyosin ring during mitosis, leading to cytokinesis defects. These findings suggest that the passive motor-independent microtubule-based mechanism is the major contributor to mitochondria distribution in wild type fission yeast cells. Hence, we establish that attachment to microtubules, but not kinesin-dependent movement and the actin cytoskeleton, is required and crucial for proper mitochondria distribution in fission yeast.published_or_final_versio

    Characterization of selected Nigerian biomass for combustion and pyrolysis applications

    Get PDF
    Biomass is the most utilized form of renewable energy, especially in developing nations, and is a possible replacement for fossil fuel in power generation. The most commonly used method for recovering energy from biomass is combustion. Many countries are exploring the utilization of energy crops and indigenous residues to deliver sustainable sources of biomass. For these bio-resources, detailed characterization of the fuel properties is essential in order to optimize the combustion processes. In this study, some potential energy crops and woods from Nigeria, namely Terminalia superba, Gmelina arborea, Lophira alata, Nauclea diderrichii, and also one abundant agricultural residue, palm kernel expellers (PKE), were characterized for their combustion properties. Standard characterization methods such as proximate and ultimate analyses, metals analysis, and ash fusion test were used for this purpose and the results were compared with some U.K. biomass. In addition, their thermal conversion was assessed by thermogravimetric analysis and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). Finally, combustion studies were conducted by suspending single biomass particles in a methane flame to obtain information on reactivities and combustion characteristics. Results indicate that the ash fractions in the Nigerian woods were low in K, Si, and Ca, resulting in low calculated alkali indices, hence these fuels are not predicted to cause severe fouling problems. Furthermore, the analysis of the evolved product during devolatilisation from Py-GC-MS suggests that the content of oil is high in Gmelina. Finally, the results from the single particle combustion experiments revealed a longer char burn out rate for Lophira and Nauclea when compared with those of Terminalia and Gmelina

    Source origins, modeled profiles, and apportionments of halogenated hydrocarbons in the greater Pearl River Delta region, southern China

    Get PDF
    We analyze 16-month data of 13 major halocarbons measured at a southern China coastal site in the greater Pearl River Delta (PRD). A total of 188 canister air samples were collected from August 2001 to December 2002. Overall inspection indicated that CH2Cl2, C2Cl 4, and C2HCl3 had similar temporal variations while CFC-11, CFC-12, and CFC-113 showed the same emission patterns during the sampling period. Diurnal variations of halocarbons presented different patterns during ozone episode days, mainly related to emission strength, atmospheric dispersion, and photochemical lifetimes. For further statistics and source appointment, Lagrangian backward particle release simulations were conducted to help understand the potential source regions of all samples and classify them into different categories, including local Hong Kong, inner PRD, continental China, and marine air masses. With the exception of HCFC-142b, the mixing ratios of all halocarbons in marine air were significantly lower than those in urban and regional air (p < 0.01), whereas no significant difference was found between urban Hong Kong and inner PRD regional air, reflecting the dominant impact of the greater PRD regional air on the halocarbon levels. The halocarbon levels in this region were significantly influenced by anthropogenic sources, causing the halocarbon mixing ratios in South China Sea air to be higher than the corresponding background levels, as measured by global surface networks and by airborne missions such as Transport and Chemical Evolution Over the Pacific. Interspecies correlation analysis suggests that CHCl3 is mainly used as a solvent in Hong Kong but mostly as a feedstock for HCFC-22 in the inner PRD. Furthermore, CH3Cl is often used as a refrigerant and emitted from biomass/biofuel burning in the inner PRD. A positive matrix factorization receptor model was applied to the classified halocarbon samples in the greater PRD for source profiles and apportionments. Seven major sources were identified and quantified. Emissions from solvent use were the most significant source of halocarbons (71 ± 9%), while refrigeration was the second largest contributor (18 ± 2%). By further looking at samples from the inner PRD and from urban Hong Kong separately, we found that more solvent was used in the dry cleaning industry in Hong Kong, whereas the contribution of cleaning solvent in the electronic industry was higher in the inner PRD. Besides the two common sources of solvent use and refrigeration, the contributions of biomass/biofuel burning and feedstock in chemical manufacturing was remarkable in the inner PRD but negligible in Hong Kong. These findings are of help to effectively control and phase out the emissions of halocarbons in the greater PRD region of southern China Copyright 2009 by the American Geophysical Union

    Identification of sugarcane interspecies hybrids with RAPDs

    Get PDF
    Identification of “Saccharum officinarum × Erianthus fulvus” F1 hybrids was performed with random amplified polymorphic DNA (RAPD) analysis. Of 280 RAPD primers used, two primers, OPA-19 and OPN-11, were found to be the most suitable for identification of the hybrids. And the hybrids facticitycheck-out rate was 70.6 and 68.3%, respectively

    A spin triplet supercurrent through the half-metallic ferromagnet CrO2

    Full text link
    In general, conventional superconductivity should not occur in a ferromagnet, though it has been seen in iron under pressure. Moreover, theory predicts that the current is always carried by pairs of electrons in a spin singlet state, so conventional superconductivity decays very rapidly when in contact with a ferromagnet, which normally prohibits the existence of singlet pairs. It has been predicted that this rapid spatial decay would not occur when spin triplet superconductivity could be induced in the ferromagnet. Here we report a Josephson supercurrent through the strong ferromagnet CrO2, from which we infer that it is a spin triplet supercurrent. Our experimental setup is different from those envisaged in the earlier predictions, but we conclude that the underlying physical explanation for our result is a conversion from spin singlet to spin triplets at the interface. The supercurrent can be switched with the direction of the magnetization, analogous to spin valve transistors, and therefore could enable magnetization-controlled Josephson junctions.Comment: 14 pages, including 3 figure

    Elemental distribution within the long-period stacking ordered structure in a Mg-Gd-Zn-Mn alloy

    Get PDF
    High angle annular dark field scanning transmission electron microscope imaging and electron energy loss spectroscopy was used to elucidate the elemental distribution (Gd, Zn, Mn) within the long-period stacking ordered (LPSO) structure in a Mg-15Gd-0.8Zn-0.8Mn (wt%) alloy. While Gd and Zn enrichment was observed within the LPSO structure, no significant enrichment in Mn was observed. After averaging over a large region, a very weak Mn signal was resolved but no significant variations in Mn signal were observed over this region, suggesting that Mn is indeed present. These results provide useful information to support the future development of high performance Mg alloys

    Solute clustering and precipitation in an Al–Cu–Mg–Ag–Si model alloy

    Get PDF
    Solute clustering and precipitation in an Al–Cu–Mg–Ag–Si model alloy has been investigated by atom probe tomography (APT) as well as high-angle annular dark-field (HAADF) imaging and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Nine types of solute clusters (Cu, Ag, Mg–Cu, Mg–Ag, Mg–Cu–Si, Mg–Ag–Si, Mg–Ag–Cu, Cu–Ag–Si and MgAgCuSi) were observed by APT in both the as-quenched alloy and after ageing the alloy at 180 °C for 1 h. Three types of precipitates (Ω (AlCuMgAg), Ξ (Al2Cu) and Mg2Si) were observed by APT and HAADF-STEM after further ageing at 180 °C for 24 h and 100 h. We propose that MgAgCu and MgAgCuSi clusters are likely to be responsible for the formation of the Ω (AlCuMgAg) phase. Furthermore, we also suggest that the Ξ (Al2Cu) phase forms from Cu clusters and the Mg2Si phase forms from the decomposition of MgAgSi and MgAgCuSi clusters by losing Ag to Ω phase growth. Many early binary clusters (Mg–Cu, Mg–Ag) do not seem to undergo a significant further growth during ageing; these are more likely to be transformed into complex ternary and quaternary clusters and be subsequently consumed during the growth of large clusters/precipitates. Furthermore, it is proposed that the plate-like Ω (AlCuMgAg) precipitates evolve continuously from the MgAgCu and MgAgCuSi clusters, rather than via heterogeneous nucleation on their precursors (i.e. MgAgCu and MgAgCuSi clusters). More interestingly, even after ageing at 180 °C for 100 h, the Ω (AlCuMgAg) precipitates remain coherent with the α-Al matrix, indicating that these precipitates have a high thermal stability. This can mainly be attributed to the presence of a single Mg–Ag-rich monolayer observed at the interface between the Ω precipitate and the α-Al matrix, significantly improving the coarsening resistance of the Ω (AlCuMgAg) precipitates. Our results thus reveal links between a variety of solute clusters and the different types of precipitates in the Al–Cu–Mg–Ag–Si model alloy. Such information can in the future be used to control the precipitation by tailoring solute clustering
    • 

    corecore