5,746 research outputs found

    Institutions, location, and network of multinational enterprises in China: a case study of Hangzhou

    Get PDF
    Working PaperBased on extensive interviews with local government officials and a survey of forty-four foreign-invested enterprises, this paper examines the role of local formal institutions and their constituent components in intra-urban location decisions of multinational enterprises (MNEs) and in network properties of their investments in Hangzhou municipality, Zhejiang province, China. This paper finds that, unlike previous studies based on developed economies, local formal institutions in terms of sub-municipal governments are an important factor influencing the intra-urban distribution of MNE investments in Hangzhou. The local formal institutional components that are of primary importance include financial incentives, industrial infrastructures, and government attitudes toward foreign investments. They are of greater significance than their municipal-level counterparts given the immediate administrative relationships between the sub-municipal authorities and the foreign investors. The start-up fiscal capability of sub-municipal governments can therefore partly determine the intra-urban pattern of foreign supplier investments

    Spatial-temporal hierarchy of regional inequality of China

    Get PDF
    ManuscriptThis paper advances the multi-scale and multi-mechanism framework of regional inequality in China by using the most recent statistical data. We analyze the multi-scalar patterns of China's regional inequality with GIS and statistical techniques, and demonstrate the significance of the municipality effect. The authors also apply multilevel modeling to identify the spatial structure and time dimension of the underlying forces driving regional development. This study illustrates that China's regional inequality is sensitive to the spatial-temporal hierarchy of multi-mechanisms, and reveals the relative influence of globalization, marketization, and decentralization

    Urban land expansion and spatial dynamics in Globalizing Shanghai

    Get PDF
    pre-printUrban land expansion in China has attracted considerable scholarly attention. However, more work is needed to apply spatial modeling to understanding the mechanisms of urban growth from both institutional and physical perspectives. This paper analyzes urban expansion in Shanghai and its development zones (DZs). We find that, as nodes of global-local interface, the DZs are the most significant components of urban growth in Shanghai, and major spatial patterns of urban expansion in Shanghai are infilling and edge expansion. We apply logistic regression, geographically weighted logistic regression (GWLR) and spatial regime regression to investigate the determinants of urban land expansion including physical conditions, state policy and land development. Regressions reveal that, though the market has been an important driving force in urban growth, the state has played a predominant role through the implementation of urban planning and the establishment of DZs to fully capitalize on globalization. We also find that differences in urban growth dynamics exist between the areas inside and outside of the DZs. Finally, this paper discusses policies to promote sustainable development in Shanghai

    Biological control of the vernal population increase of \u3cem\u3eCalanus finmarchicus\u3c/em\u3e on Georges Bank

    Get PDF
    An adjoint data assimilation approach was used to quantify the physical and biological controls on Calanus finmarchicus N3–C6 stages on Georges Bank and its nearby environs. The mean seasonal cycle of vertically averaged distributions, from 5 years of the GLOBEC Georges Bank Broad-Scale Surveys between January and June, was assimilated into a physical–biological model based on the climatological circulation. Large seasonal and spatial variability is present in the inferred supply sources, mortality rates, computed molting fluxes, and physical transports. Estimated mortalities fall within the range of observed rates, and exhibit stage structure that is consistent with earlier findings. Inferred off-bank initial conditions indicate that the deep basins in the Gulf of Maine are source regions of early stage nauplii and late-stage copepodids in January. However, the population increase on Georges Bank from January to April is controlled mostly by local biological processes. Magnitudes of the physical transport terms are nearly as large as the mortality and molting fluxes, but their bank-wide averages are small in comparison to the biological terms. The hypothesis of local biological control is tested in a sensitivity experiment in which upstream sources are set to zero. In that solution, the lack of upstream sources is compensated by a decrease in mortality that is much smaller than the uncertainty in observational estimates

    Relative mobility of radioactive trace elements across the sediment-water interface in the MERL model ecosystems of Narragansett Bay

    Get PDF
    The mobilities of radioactive trace elements across the water sediment boundary of a coastal marine ecosystem were investigated. The studies carried out included chemical speciation experiments ofthe solution and solid phases, as well as verification experiments in controlled model ecosystems ( MERL tanks). The latter included backdiffusion experiments under oxic and anoxic conditions and experiments with artificially increased sediment resuspension rates. These studies have produced seven general conclusions: (1) The backdiffusion of Cs, Mn, Co, and Zn radiotracers across the sediment-water interface into oxic waters and of Mn and Co radiotracers into anoxic waters was predicted from laboratory experiments. (2) The removal from the water and the partial immobilization in the sediments of Cs, Zn and Cd tracers, during anoxic conditions, agreed with results from selective leaching experiments of surface sediments with dithionite-citrate solution, a mildly reducing agent which can reprecipitate liberated metals as sulfides. While most nuclides were leached by this solution to the same extent as by hydroxylamine, another reducing agent, Zn, Cd and Cs tracers were not, possibly due to the formation of sulfidic and other phases by the former solution. (3) Radioisotopes of particle-reactive elements (Sn, Fe, Hg and Cr) were shown by sequential extraction and ultrafiltration experiments to be involved in the dynamic cycle of colloid formation and aggregation in the water column and sediments. (4) In order to extend the information on nuclide behavior gained from the radiotracer methodology to stable trace elements, (which are often introduced into coastal water in ionic form) stable metals were added to one tank. Radiotracer behavior in the water column (removal rates and extent of uptake by suspended particles) was quite similar to that of their stable metal counterparts at ambient concentrations (Mn, Cr, Fe, Cd and Zn), added simultaneously to one tank, and to the metal behavior in other tanks operating under similar conditions. (5) The experiments with increased resuspension rates without concomitant increased bioturbation rates had, as expected, only small effects on removal rates of the radiotracers. (6) Sediment profiles of the tracers revealed both seasonal and element-specific differences in mobility near the sediment interface. Tracer profiles allowed the calculation of bioturbation (tracer microspheres) and pore water diffusion (22Na) rates, as well as an investigation of the spacial and temporal dynamics of trace element cycling near the sediment-water interface. (7) Se and Cr nuclides which were added in different oxidation states to different tanks, showed that the higher oxidation state forms (Se-VI, Cr-VI) are removed more slowly from the water column than the lower oxidation state forms (Se-IV, Cr-III). Furthermore, speciation experiments have shown that the increase in the colloidal fraction of Se may be used to calculate the characteristic times of Se-reduction to elemental or organically-bound forms

    Single vibronic level emission spectroscopic studies of the ground state energy levels and molecular structures of jet-cooled HGeBr, DGeBr, HGeI, and DGeI

    Get PDF
    Single vibronic level dispersed fluorescence spectra of jet-cooled HGeBr, DGeBr, HGeI, and DGeI have been obtained by laser excitation of selected bands of the à A″1-X̃ A′1 electronic transition. The measured ground state vibrational intervals were assigned and fitted to anharmonicity expressions, which allowed the harmonic frequencies to be determined for both isotopomers. In some cases, lack of a suitable range of emission data necessitated that some of the anharmonicity constants and vibrational frequencies be estimated from those of HGeCl∕DGeCl and the corresponding silylenes (HSiX). Harmonic force fields were obtained for both molecules, although only four of the six force constants could be determined. The ground state effective rotational constants and force field data were combined to calculate average (rz) and approximate equilibrium (rze) structures. For HGeBr rze(GeH)=1.593(9)Å, rze(GeBr)=2.325(21)Å, and the bond angle was fixed at our CCSD(T)/aug-cc-pVTZ ab initio value of 93.6°. For HGeI we obtained rze(GeH)=1.589(1)Å, rze(GeI)=2.525(5)Å, and bond angle=93.2°. Franck-Condon simulations of the emission spectra using ab initio Cartesian displacement coordinates reproduce the observed intensity distributions satisfactorily. The trends in structural parameters in the halogermylenes and halosilylenes can be readily understood based on the electronegativity of the halogen substituent. ACKNOWLEDGMENT

    Organic Single-Crystalline p-n Heterojunctions for High-Performance Ambipolar Field-Effect Transistors and Broadband Photodetectors

    Get PDF
    Organic semiconducting single crystals are ideal building blocks for organic field-effect transistors (OFETs) and organic photodetectors (OPDs) because they can potentially exhibit the best charge transport and photoelectric properties in organic materials. Nevertheless, it is usual for single-crystal OFETs to be built from one kind of organic material in which the dominant transport is either electron or hole; such OFETs show unipolar charge transport. Furthermore, single-crystal OPDs present high performance only in restricted regions because of the limited absorption of one-component single crystals. In an ideal situation, devices which comprise both electron- and hole-transporting single crystals with complementary absorptions, such as single-crystalline p–n heterojunctions (SCHJs), can permit broadband photoresponse and ambipolar charge transport. In this paper, a solution-processing crystallization strategy to prepare an SCHJ composed of C60 and 6,13-bis­(triisopropylsilylethynyl)­pentacene (TIPS-PEN) was shown. These SCHJs demonstrated ambipolar charge-transport characteristics in OFETs with a balanced performance of 2.9 cm2 V–1 s–1 for electron mobility and 2.7 cm2 V–1 s–1 for hole mobility. This demonstration is the first of single-crystal OFETs in which both electron and hole mobilities were over 2.5 cm2 V–1 s–1. OPDs fabricated upon as-prepared SCHJs exhibited highly sensitive photoconductive properties ranging from ultraviolet to visible and further to near-infrared regions as a result of complementary absorption between C60 and TIPS-PEN, thereby attaining photoresponsivities that are among the highest reported values within the OPDs. This work would provide valuable references for developing novel SCHJ systems to achieve significant progress in high-performance ambipolar OFETs and broadband OPDs
    • …
    corecore