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ABSTRACT: Organic semiconducting single crystals are ideal building blocks for 

organic field-effect transistors (OFETs) and organic photodetectors (OPDs) because 

they can potentially exhibit the best charge transport and photoelectric properties in 

organic materials. Nevertheless, it is usual for single-crystal OFETs to be built from 

one kind of organic material in which the dominant transport is either electron or hole; 

such OFETs showing unipolar charge transport. Furthermore, single-crystal OPDs 

present high performance only in restricted regions because of the limited absorption 

of one-component single crystals. In an ideal situation, devices which comprise both 

Page 1 of 33

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

mailto:wangshirong@tju.edu.cn
mailto:j.dennis@qmul.ac.uk


2

electron and hole transporting single crystals with complementary absorptions, like 

single-crystalline p-n heterojunctions (SCHJs), can permit broadband photo-response 

and ambipolar charge transport. In this paper, a solution-processing crystallization 

strategy to prepare an SCHJ composed of C60 and 6,13-

bis(triisopropylsilylethynyl)pentacene (TIPS-PEN) was shown. These SCHJs 

demonstrated ambipolar charge transport characteristics in OFETs with a balanced 

performance of 2.9 cm2 V−1 s−1 for electron mobility and 2.7 cm2 V−1 s−1 for hole 

mobility. This demonstration is the first of single-crystal OFETs in which both electron 

and hole mobilities were over 2.5 cm2 V−1 s−1. OPDs fabricated upon as-prepared 

SCHJs exhibited highly-sensitive photo-conductive properties ranging from ultraviolet 

to visible and further to near-infrared regions as a result of complementary absorption 

between C60 and TIPS-PEN; thereby attaining the photo-responsivities amongst the 

highest-reported values within the organic photodetectors. This work would provide 

valuable references for developing novel SCHJ systems to achieve significant progress 

in high-performance ambipolar OFETs and broadband OPDs.

Introduction

Recently, continuous research attention has been drawn to organic field-effect 

transistors (OFETs) for lightweight and deformable electronic applications like 

photodetectors,1 sensors,2 displays,3 and circuits.4 Included in these, organic 

photodetectors (OPDs), which translate optical signals into electrical signals, occupy 

an essential position in optical interconnection techniques, light-wave communications, 
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and high-resolution imaging.5–10 Since single crystals are free of molecular disorder and 

grain boundary, they are considered to be a favorable charge transport medium for OPD 

and OFET devices.11–14 High-performance single-crystal electronics are generally 

constructed from one kind of organic semiconducting crystals in which either electron 

or hole transport is dominant. Devices which comprise both p-type and n-type single 

crystals like single-crystalline p-n heterojunctions can instinctively allow more 

functions such as broadband photo-response and ambipolar charge transport.15 

Two-dimensional materials such as graphene have been appearing as promising 

contenders within p-n heterojunction for photoelectronic and electronic 

applications.16,17 Organic semiconductors are dissimilar to 2D nanosheets which 

comprise an atomic layer, in that they can form quasi-2D single crystals in which 

molecules are bonded weakly by van der Waals interaction rather than by covalent 

bonds.18 Therefore, they have the potential for solution processing at room temperature 

as well as for chemical modification.18 Nevertheless, literature has shown only a small 

number of pioneering studies on SCHJs as a result of difficulty in obtaining such a 

highly-ordered nanostructure of this kind. Physical vapor transport (PVT) method and 

one-pot mixed-solution crystallization method have been demonstrated to successfully 

prepare organic SCHJ p-n systems.15,19 However, there are drawbacks with the PVT 

technique in that it needs complex equipment and is energy consuming, whereas the 

one-pot mixed-solution crystallization technique needs one crystal to grow quickly and 

the other to grow particularly slowly, so as to avert mutual disturbance of these two 

crystals in order to obtain overlapping bilayer single crystals instead of a combination 
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of two solids.15 It was reported that this one-pot crystallization technique successfully 

prepared only two specific p-n pairs (DPP-PR/C60 and C8BTBT/C60) up to the present 

time as a result of this stringent requirement. Due to such limits, the device performance 

in such system remains moderate. As summarized in Table 1, for reported single 

crystal-based ambipolar OFETs, the hole and electron mobility are usually low and 

unbalanced; Single-crystal based OFETs with both hole and electron mobility 

exceeding 1 cm-2 V-1 s-1 is rarely seen in the literature.12,15,20–26 Single-crystal OPDs 

have been demonstrated to exhibit higher photo-responsivity than polycrystalline thin 

film devices, as shown in Table 2. However, due to the limited absorption of one-

component single crystals, these single-crystal OPDs present high performance only in 

limited regions. Therefore, to achieve significant advancements in both high-

performance ambipolar OFETs and broadband OPDs, developing facile crystallization 

method to prepare novel SCHJ p-n nanostructures is urgently necessary.

In this paper, a facile two-step aligned crystallization strategy is reported; this is 

for the purpose of acquiring single-crystalline p-n heterojunctions which comprise two 

“benchmark” organic semiconductors, being C60 (n-type) and 6,13-

bis(triisopropylsilylethynyl)pentacene (TIPS-PEN, p-type) and also to study its 

application in ambipolar OFETs and broadband photodetectors. The SCHJs presented 

herein show a balanced ambipolar charge transport with an average performance of 

(2.44 ± 0.222) cm2 V−1 s−1 for electron mobility (μe) and (2.17 ± 0.309) cm2 V−1 s−1 for 

hole mobility (μh) which demonstrate the first of single crystal OFETs with both 

electron and hole mobilities greater than 2 cm2 V−1 s−1. Photodetectors based upon as-
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prepared SCHJs offer a highly-sensitive photo-response with fast photo-switching and 

repeatable characteristics in broadband UV-Vis-NIR regions due to the complementary 

absorption between C60 and TIPS-PEN; furthermore, the photo-responsivities achieved 

here are among the highest values in the reported organic photodetectors. The presented 

work here is a valuable reference for the development of novel single-crystalline 

heterojunction nanostructures and the exploration of the fundamental studies on organic 

electronics at new organic/organic interfaces and enables significant advancements in 

high-performance ambipolar OFETs and broadband OPDs.

Result and Discussion

TIPS-PEN and C60 are among the most extensively-utilized p-type and n-type 

semiconductors respectively with both μh (TIPS-PEN) and μe (C60) greater than 5 cm2 

V-1 s-1 in single-crystal OFETs.27,28 Furthermore, they demonstrate superior 

performance in several photoelectronic devices like hybrid perovskite solar cells,29 

OPVs, 30–32 and OLEDs.33 Therefore, C60 and TIPS-PEN, on this work, were utilized to 

grow single-crystalline p-n heterojunctions. Figure S1 (Supporting Information) 

depicts the molecular structures of C60 and TIPS-PEN, whereas Figure 1a illustrates 

the fabrication of SCHJs via a two-step aligned crystallization technique. Two-step 

crystallization method using orthogonal solvents have been reported to successfully 

prepare high-quality SCHJs for optoelectronics and FET-based memory devices and 

the devices based on the SCHJs prepared by this two-step crystallization method exhibit 

superior performance due to the high-quality interface formed by this method.20,34 In 

addition, this method is also called interfacial solution-processed crystallization 
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6

method, where a second layer of single crystals forms on the interface with the first 

single crystal layer, leading to bilayered single-crystalline structures.20 Therefore, this 

two-step crystallization method can offer high-quality interface. For aligned crystal 

growth, a preferential drying direction is imposed upon the drop casted solution in order 

to control the direction of the crystal growth which is attained by placing the substrate 

in a Petri dish at an angle of 5° to the horizontal line on a hot plate at a temperature of 

(25±1) °C. Following this procedure, the lid was replaced immediately in order to trap 

the solvent vapor, thereby creating a vapor-saturated condition within the Petri dish. 

Firstly, this technique was applied to grow C60 ribbons by drop-casting a C60 solution 

in an o-dichlorobenzene (ODCB) solvent; subsequently we rotated the substrates by 

90°, and following this, we drop-casted TIPS-PEN solution using the same technique 

as aforementioned. In this way, TIPS-PEN single crystals formed over the top of the 

first due to slow solvent evaporation; this results in bilayer structures as depicted in 

Figure S2 (Supporting Information). Avoidance of damaging the first layer in the 

crystallization process of second layer is a principal challenge in the second stage, the 

key to this being obviously the choice of solvent for the second layer.35 Thus, 4-methyl-

2-pentanone, which can effectively dissolve TIPS-PEN but cannot dissolve C60 , is 

chosen as the solvent to grow TIPS-PEN single crystals without dissolving the first 

layer. In order to remove the remaining solvents, the substrate was treated by vacuum 

annealing following the TIPS-PEN crystal growth. Consequently, as shown in Figure 

S3 (Supporting Information), a bilayer structure having both ribbons of a few microns 

wide was acquired. 
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As shown in Figure 1c and d, the crystals were studied by energy dispersive 

spectrum (EDS) on a scanning electron microscope (SEM) to identify the chemical 

composition of the overlapping bilayer in Figure 1b. It was distinctly demonstrated by 

element mapping of Si (TIPS-PEN) and C (both TIPS-PEN and C60) that the TIPS-PEN 

ribbon was over the top of the C60 ribbon to form a single-crystalline heterojunction. 

Atomic force microscopy (AFM) height profile was employed in order to study the 

thickness of the overlapping SCHJ as illustrated in Figure 1e and it was shown that the 

thickness of one SCHJ was 160 nm including 71 nm of C60 layer and 89 nm of TIPS-

PEN layer. As illustrated in Figure 1f and g, crystallography studies of the bilayers 

was performed via select area electron diffraction (SAED) on transmission electron 

microscopy (TEM). Two groups of diffraction spots (blue and yellow circles) in Figure 

1g were shown by the SAED of the bilayers, indicating two different single crystals. 

This is similar to the SAED patterns reported for C60/DPP-RP and CuPc/F16CuPc 

single-crystalline heterojunctions, where two sets of diffraction spots were also 

observed.15,19 It should be noted that the growth of TIPS-PEN crystal on top of C60 

crystal is not the epitaxial growth; the lattice mismatch of both crystals is unable to 

provide significant condition for epitaxial growth.19 We indexed the SAED pattern of 

TIPS-PEN with a triclinic crystal system, and the cell dimensions of TIPS-PEN ribbon 

crystal are a = 7.58 Å, b = 7.72 Å and c = 16.81 Å, which is in accordance well with 

the reported literature.36 A face center cubic (FCC) crystal structure having a lattice 

constant of a = 1.414 nm was indexed by the SAED pattern for the C60 ribbon crystals, 

according with this value of pristine C60 crystals (1.415 nm).37 It is shown by the 
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evidence of the AFM, EDS OM, SAED, SEM and TEM that the SCHJ of C60 and TIPS-

PEN ribbon crystals were indeed obtained.

Our p-n heterojunctions’ single-crystalline nature demonstrates their high quality 

and possible utilization in high-performance ambipolar OFETs; therefore, we 

artificially designed an asymmetric device structure having a top-contact and bottom-

gate configuration in order to study their ambipolar charge transport properties. The 

schematic diagram and the corresponding SEM image of the as-fabricated OFETs are 

respectively depicted in Figure 2a and b. Three different circuit models will be induced 

while applying different source and drain pairs because of the asymmetric device 

structure. When S1/D1 or S2/D2 is utilized as a source and drain pair, the performance 

of the device will be dominated by the charge transport through single-component 

ribbon crystals (C60 or TIPS-PEN ribbon), but when S1/D2 or S2/D1 is used as the 

source and drain electrodes, the charge transport performance is determined by single-

crystalline heterojunction. Firstly, to study the charge transport through single-

crystalline heterojunction, we selected S1/D2 as the electrode pair. Figure 2c and d 

depicts the typical transfer characteristics of devices, showing V-shaped curves in 

which both arms correspond to hole transport and electron transport, indicating the 

ambipolar charge transport characteristics in SCHJs. The excellent gate modulation was 

confirmed by the output characteristics (Figure S4 and S5, Supporting Information). 

Figure S6 and S7 illustrates the histograms of electron and hole mobility acquired from 

50 devices based on as-prepared SCHJs. Based on these, an average µh of (2.17 ± 0.309) 

cm2 V-1 s-1 and an average µe of (2.44 ± 0.222) cm2 V-1 s-1 were obtained on as-
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fabricated SCHJ OFETs. Secondly, we selected S1/D1 as the electrode pair to examine 

the charge transport properties of individual TIPS-PEN ribbon crystal. In this condition, 

only p-channel devices exhibited effective field-effect mobility. 50 devices were 

studied and an average μh of (2.83 ± 0.402) cm2 V-1 s-1 were achieved as shown in 

Figure S8. Thirdly, we selected S2/D2 as the electrode pair to study the charge 

transport characteristics of individual C60 ribbon crystal. On the contrary, effective 

field-effect mobility can only be extracted from n-channel devices and we achieved an 

average µe of (2.74 ± 0.266) cm2 V-1 s-1 (Figure S9). We found that compared to the 

hole and electron mobility of the individual ribbon crystal, the mobility values of the 

single-crystalline p-n heterojunctions are comparable but slightly lower. This phenome 

was also observed by Bao et al.24 In addition to the different channel coverage, this 

disparity may be due to the slight incorporation of one molecule inside the crystal of 

the other and therefore potential crystal lattice disruption.24

When S1/D2 was selected as the electrode pair, the conductive channel contains 

C60, the SCHJ, and TIPS-PEN. The schematic band diagram of the charge transport 

process is shown in Figure S10. When bias voltage is applied, band bending happens 

at the interface between C60 and TIP-PEN. As shown in Figure S10b, when (VGS - VT) 

= 0, the energy difference between the LUMO of C60 and HOMO of TIPS-PEN is 

defined as Vb1, and the energy difference between the HOMO of TIPS-PEN and the 

HOMO of C60 is defined as Vb2. As shown in Figure S10c, when (VGS - VT) > 0 (n-

channel operation mode), Vb1 decreases by continuously increasing VGS, and the 

probability that the electrons at the TIPS-PEN HOMO hopping to C60 LUMO increases, 
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leading to increases of electron concentration in C60 and hole concentration in TIPS-

PEN accordingly. In this case, IDS of this n-channel operation mode will increase. 

While for the p-channel operation mode where (VGS - VT) < 0 (Figure S10d), Vb2 

decreases when the value of VGS is increasing. In this case, there is a large amount of 

hole accumulation at the valence band of TIPS-PEN. Due to the decreasing Vb2, the 

holes at the valence band of TIPS-PEN recombine, at the interface, with the electrons 

in C60 HOMO, forming the recombination current. This recombination current 

increases when VGS is more negative, leading to the field effect.    

For ambipolar FETs, balanced electron and hole mobility are desirable, because 

this is important for a broad range of electronic devices such as complementary circuits 

and light-emitting field-effect transistors.38 The maximum performance we achieved in 

SCHJ based OFETs is a balanced hole and electron mobility of 2.71 cm2 V−1 s−1 and 

2.89 cm2 V−1 s−1, respectively. To better demonstrate the improvement of present 

SCHJs for ambipolar OFETs, we make a comparison of some recently reported SCHJs 

applied in OFETs. The donor-acceptor system and the corresponding parameters of the 

OFETs based on these SCHJs are tabulated in Table 1. It clearly shows that most of 

the SCHJs present relatively low ambipolar charge transport mobilities with both hole 

and electron mobility below 1 cm2 V-1 s-1. But there are two exceptions: CdCl3/C60 

SCHJ presents an electron mobility as high as 1.28±0.41 cm2 V-1 s-1 in OFETs but its 

hole mobility is not given;20 While DPTTA/F2TCNQ gives OFETs a relatively higher 

hole mobility of 1.57 cm2 V-1 s-1 but its electron mobility is about 4 times lower (0.47 

cm2 V-1 s-1).21 The TIPS-PEN/C60 SCHJ in the present work, which gives ambipolar 
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OFETs balanced charge transport properties with average hole mobility of 2.17 cm2 V-1 

s-1 and average electron mobility of 2.44 cm2 V-1 s-1, is the first demonstration for SCHJ-

based OFETs with both hole and electron mobility above 2 cm2 V-1 s-1, making it a 

potential candidate for high-performance ambipolar OFETs. 

TIPS-PEN/C60 SCHJ is endowed with high-mobility ambipolar charge transport 

property, providing considerable potential in high-performance photoelectronic devices 

like organic photodetectors. The absorption spectra of TIPS-PEN/C60 single-crystalline 

heterojunctions, pristine TIPS-PEN single crystal, and C60 single crystal are depicted in 

Figure 3d, whereas the TIPS-PEN single crystals’ spectrum present a dominant band 

centered at 653 nm with absorption being extended to the NIR region, and also two 

fractionally weaker shoulder bands having peaks at 547 and 598 nm outside the C60 

single crystals’ spectral coverage. The TIPS-PEN/C60 SCHJ exhibits broadband 

absorption in the region of 350-750 nm as a result of this complementary absorption 

enabling it to be a possible candidate for broadband photodetection.

As depicted in Figure 3a and b, a discrete heterojunction was employed to 

construct a photodetection device which used the asymmetrical (ITO/Al) electrodes in 

order to reduce the energy barrier between the semiconducting crystals and the 

electrodes, thereby effectively easing the charge injection.39 The reason for this, as 

depicted in Figure 3c, is that the Al’s work function being a good match with the 

LUMO energy of the n-type C60 while the ITO work function being a good match with 

the HOMO energy level of the p-type material TIPS-PEN.

Page 11 of 33

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12

The diode characteristic and rectifying properties are typical characteristics of p-n 

heterojunctions.40 In a typical p−n heterojunction, rectification results from the 

potential barrier formed at the interface between two types of semiconductor materials, 

p- and n-types.40 In the forward bias, the current increased with increase in the applied 

bias due to decrease in the potential barrier while in the reverse bias only a small amount 

of current can flow as the barrier height is increased with the applied bias.40 Figure 3e 

illustrates the comparison of the current-voltage (I-V) curves of as-fabricated 

photodetectors under dark and upon illumination by 1.5 mW cm-2 laser with different 

wavelengths at room temperature. The TIPS-PEN/C60 SCHJ device, as expected, 

presents typical diode characteristics and demonstrates good rectifying property, 

indicating that high-quality heterojunctions are formed between TIPS-PEN and C60 

ribbons. 

Meanwhile, photodetectors based on a pure TIPS-PEN or pure C60 single crystal 

were also studied under the identical condition for comparison. Figure 3e shows how 

a weak dark current (5.7 nA at 30 V bias) was given by this SCHJ photodetector, but 

when illuminated by the laser of different wavelengths, there was a considerable 

increase in the photo currents. In order to evaluate the photodetectors’ performances 

quantitatively, their spectral responsivity (R) was calculated according to Equation (1):

𝑅 =
𝐼𝑙𝑖𝑔ℎ𝑡 ― 𝐼𝑑𝑎𝑟𝑘

𝑃𝑆               (1)

where Ilight is the current when illuminated by the laser, Idark is the current under 

dark condition, P is the incident power density, and S is the effective illuminated area. 
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With regard to the SCHJ photodetector, R was calculated as 165.5 A W-1 at 350 

nm, 149.6 A W-1 at 650 nm and 22.5 A W-1 at 720 nm when applying a bias voltage of 

30 V (Figure 3f), thereby showing the broadband photo-response attributes of SCHJ 

OPDs. Contrastingly, the R for the pure C60 single crystal photodetector was calculated 

as being significantly less at 96.7 A W–1 at 350 nm, 16.6 A W–1 at 650 nm and 8.9 A 

W-1 at 720 nm. Likewise, photodetectors based upon the TIPS-PEN single crystal 

indicate weaker photo-response attributes than do SCHJ devices, having an R of 79.9 

A W–1 and 114.5 A W–1 respectively, attained at 350 nm and 650 nm; furthermore, 

negligible photo-response was detected in the NIR area. It was revealed by all of these 

results that the single-crystalline heterojunction formed between C60 and TIPS-PEN 

single crystals led to a considerable enhancement in the response in the ultraviolet 

region and also provided the extension of response to the visible and near-infrared 

regions.

Literatures reveals that with regard to the heterojunction photodetectors, when 

applying a bias voltage, the heterojunction interface is able to improve the excitons’ 

dissociation (photogenerated in both TIPS-PEN and C60 single crystals) into more 

separated free charge carriers, thereby resulting in the photocurrent improvement of the 

SCHJ photodetector.41–43 The deeper-lying LUMO level of C60 is able to transfer the 

photogenerated electrons from TIPS-PEN to C60, thereby, leading to spatial separations 

of holes and electrons. Resultantly, the carrier recombination was suppressed and the 

holes’ lifetime was extended in TIPS-PEN single crystals, leading to greater 

enhancement in the photodetector performance.
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Figure 4a depicts the SCHJ device’s spectral responsivity as function of the bias 

voltage, which is also shown in a contour (Figure 4b). It is distinctly observable that 

the device responsivity is considerably improved by increasing bias voltage, resulting 

in the sensitive identification of NIR and fully-visible light at bias voltages greater than 

10V. Furthermore, Figure 3f shows that the spectral responsivity displays clear 

absorption peaks coincident with the peaks observed in the SCHJs’ absorption 

spectrum. Figure 4c depicts time-resolved current response in different illumination 

conditions with and without illumination at an applied bias of 30V. The “on” and “off” 

states maintain the same current level for several cycles under illumination of identical 

wavelength, thereby showing these photodetectors’ excellent stability and reversibility. 

Additionally, it is demonstrated by the analysis of an enlarged photo-response process 

involving one rise and one reset that the SCHJ devices have fast photo-switching 

attributes with both rising and reset response times under one second (Figure 4d).

The performance of representative organic photodetectors is summarized in Table 

2 which indicates that high responsivities are normally obtained in single crystal 

devices; for example, C8-BTBT single crystal device (124 A W-1 under 365 nm UV 

illumination) and C60 single crystal device (90.4 A W–1 under 360 nm UV 

illumination);44,45 nevertheless, as the result of the limited absorption regions of these 

single crystals, the photodetectors on which they are based demonstrate only high 

performance in restricted regions. The current TIPS-PEN/C60 photodetectors exhibit 

higher responsivities than the majority of these devices;44–58 furthermore, they 
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demonstrate highly-sensitive photo-response from NIR to Vis to UV regions, showing 

their excellence for broadband UV-Vis-NIR photodetection

Conclusion

 In summary, a simple solution-processed crystallization strategy was developed 

to prepare a novel organic SCHJ system comprising TIPS-PEN and C60. TIPS-PEN/C60 

single-crystalline heterojunctions present balanced high-performance ambipolar charge 

transport property in OFETs and highly-sensitive broadband UV-Vis-NIR responsivity 

in OPDs. The device performances of presented SCHJ were among the highest for 

single crystal based ambipolar OFETs and OPDs, respectively. The presented work 

here is a valuable reference for the development of novel single-crystalline 

heterojunction nanostructures and the exploration of the fundamental studies on organic 

electronics at new organic/organic interfaces and enables significant advancements in 

high-performance ambipolar OFETs and broadband OPDs.
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Figure 1 (a) Schematic diagram of preparation of TIPS-PEN/C60 single-crystalline 

heterojunctions; (b) SEM image, associate element mappings of (c) C and (d) Si using 

EDS and (e) AFM image of one single-crystalline p-n heterojunction; (f) TEM image 

and (g) associate electron diffraction pattern of one SCHJ.

(a)

(b) (c) (d)

(e) (f) (g)
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Figure 2 (a) Schematic diagram and (b) SEM image of as-fabricated OFET device 

based on TIPS-PEN/C60 SCHJ. Typical transfer curves of s as-fabricated OFET device 

in (c) p-channel operation mode and (d) n-channel operation mode, respectively.

(h)

(a) (b)

(c) (d)
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Figure 3 (a) Schematic configuration and (b) SEM image of a single p-n heterojunction 

device; (c) Energy level alignment of the device structures; (d) Absorption spectra of 

C60 single crystals, TIPS-PEN single crystals and C60/TIPS-PEN single-crystalline 

heterojunctions; (e) Current-voltage (I–V) characteristic of a single TIPS-PEN/C60 

single-crystalline heterojunction device in dark and under laser illuminations; (f) 

Spectral responsivity of C60, TIPS-PEN and SCHJ devices. 

(a) (b)

(c) (d)

(e) (f)
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Figure 4 (a) Spectral responsivity of the SCHJ devices measured as a function of 

applied bias voltage; (b) Responsivity of the SCHJ device shown in 2D contour plot; 

(c) time-resolved photo-response and (d) an analysis of one response and reset process 

of SCHJ device under different laser illuminations.

(a) (b)

(c) (d)
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Table 1 Comparison of the device performance for the TIPS-PEN/C60 SCHJ and other 

characteristic organic SCHJs.

Donor Acceptor
μh

[cm-2 V-1 s-1]
μe

[cm-2 V-1 s-1]
Pin

[mW cm-2]
JSC

[mA cm-2]
VOC

[V]
FF

PCE
[%]

Ref.

CdCl3 C60 NA 1.28 ± 0.41 NA NA NA NA NA 20

DPTTA TCNQ 0.03 0.04 NA NA NA NA NA 59

DPTTA F2TCNQ 1.57 0.47 NA NA NA NA NA 21

DPTTA DTTCNQ 0.77 0.24 NA NA NA NA NA 60

CuPc F16CuPc 0.05 0.07 100 0.054 0.35 0.36 0.007 19

CuPc H2TPyP NA NA 5.51 0.029 0.64 0.23 0.08 23

C8-BTBT C60 0.16 0.17 NA NA NA NA NA 24

DPP-PR C60 0.0061 0.59 100 1.56 0.56 0.38 0.33 15

DPTTA C60 0.3 0.01 10 0.3 0.48 0.18 0.27
DPTTA C70 0.07 0.06 10 0.002 0.17 0.15 0.0005

25,26

TPB C60 0.066 0.087 100 1.152 0.53 0.39 0.24 12

TIPS-PEN C60 2.71 2.89 100 4.37 0.52 0.59 1.34 Present work
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Table 2 Comparison of the device performance for the TIPS-PEN/C60 SCHJ 

photodetectors and other characteristic OPDs.

Photodetector Light source
[nm]

Pin

[mW cm-2]
|Vds|
[V]

R
[A W-1] Ref.

Pentacene 365 1.55 50 50 46

CuPc 365 1.55 50 2 46

Spiro-4p-CPDT 370 NA 20 25 47

Spiro-DPSP 370 0.127 10 1 48

C60 360 4.38 10 90.4 44

6T 365 1.5 50 2.4 49

BPTT 380 1.55 50 82 50

365 1.0 30 124
C8-BTBT

365 0.2 30 117
45

F8T2 405 3 10 0.0004 51

Graphene 532 NA 0.02 8.61 52

Pentacene 650 5 50 0.45 46

Pentacene/C60 PHJ 580 NA 10 0.122 53

P3HT/PC61BM BHJ 468 40 1 0.1 54

MEH-PPV/PC61BM BHJ 488 0.001 4 0.14 55

F8T2/PC61BM BHJ 460 9 10 0.67 56

PDDTT/PC61BM BHJ 800 0.22 0.5 0.1 57

PTT/PC61BM BHJ 800 NA 5 0.267 58

TIPS-PEN/C60 SCHJ 350 1.5 30 165.5 Present work
TIPS-PEN/C60 SCHJ 650 1.5 30 149.6 Present work
TIPS-PEN/C60 SCHJ 720 1.5 30 22.5 Present work
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