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Abstract 
 
An adjoint data assimilation approach was used to quantify the physical and biological controls 
on Calanus finmarchicus N 3  to C  stages on Georges Bank and its nearby environs. The mean 
seasonal cycle of vertically-averaged distributions, from 5 years of the GLOBEC Georges Bank 
Broad-Scale Surveys between January and June, was assimilated into a physical-biological 
model based on the climatological circulation. Large seasonal and spatial variability is present in 
the inferred supply sources, mortality rates, computed molting fluxes, and physical transports. 
Estimated mortalities fall within the range of observed rates, and exhibit stage structure that is 
consistent with earlier findings.  Inferred off-bank initial conditions indicate that the deep basins 
in the Gulf of Maine are source regions of early-stage nauplii and late-stage copepodids in 
January. However, the population increase on Georges Bank from January to April is controlled 
mostly by local biological processes.  Magnitudes of the physical transport terms are nearly as 
large as the mortality and molting fluxes, but their bank-wide averages are small in comparison 
to the biological terms.  The hypothesis of local biological control is tested in a sensitivity 
experiment in which upstream sources are set to zero.  In that solution, the lack of upstream 
sources is compensated by a decrease in mortality that is much smaller than the uncertainty in 
observational estimates. 
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1. Introduction 

Calanus finmarchicus is a key zooplankton species in the Georges Bank (GB)/Gulf of 

Maine (GOM) ecosystem, and is an important food source for larval stages of commercially 

important fish species. Its life history is multifaceted (Carlotti, 1996), including hatching from 

eggs, development through 6 naupliar stages (N1 -N ) and 5 copepodid stages (C1 -C 5 ), non-

obligatory diapause, and maturation to adulthood (C ). Large seasonal variability is present in 

the annual cycle of the C. finmarchicus population on GB (e.g., Davis, 1987). This species 

dominates the zooplankton biomass on the bank in spring/early summer, but is almost absent 

from the Crest of the bank from fall to the start of winter. Models have been used to elucidate 

aspects of the population dynamics of C. finmarchicus (Lynch et al., 1998; Miller et al., 1998; 

Tittensor et al., 2003; Zakardjian et al., 2003; Speirs et al., 2005; Johnson et al., this volume), but 

the processes controlling the annual population cycle remain enigmatic.  In particular, the 

relative roles of recruitment, development, mortality, and physical transport have yet to be 

quantified in a systematic and spatio-temporally explicit manner. Such knowledge is not only 

important to evaluate the role of C. finmarchicus in the food web, but also to predict the 

consequences of climatic change on this organism (Hirche, 1996).  

6

6

Abundance and distribution patterns of C. finmarchicus populations in the region are 

strongly influenced by physical mechanisms. The physical environment is complex (e.g., 

Bigelow 1927; Flagg, 1987; Butman et al., 1987; Lynch et al., 1996; Gangopadhyay et al., 2003). 

North of GB is the GOM, comprising three deep basins: Jordan Basin, Wilkinson Basin, and 

Georges Basin. South of GB is the continental slope and the Slope Water. To the west, GB is 

separated from Nantucket Shoals by the Great South Channel; to the northeast, it is separated 

from the Scotian Shelf by the Northeast Channel. The bank itself consists of distinctive 
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subregions, such as the Northern Flank, the Northeast Peak, the Southern Flank, and the Crest 

(Figure 1). The mean circulation in the GOM/GB area is dominated by counter-clockwise flow 

along the perimeter of the basin, cyclonic gyres over the deep basins, clockwise circulation 

around GB, inflow through the Northeast Channel, and outflow via the western edge of the 

Southern Flank (Beardsley et al. 1997).  

Observations from the GLOBEC (Global Ocean Ecosystem Dynamics) Georges Bank 

broad-scale surveys (Figure 1) provide an opportunity to investigate the physical and biological 

mechanisms controlling the population dynamics of C. finmarchicus. Our approach is to compute 

a monthly stage-based climatology from these observations, and to assimilate these data into a 

physical-biological model based on the climatological hydrodynamics of the region (Lynch et al., 

1996).  The inverse problem (schematized in Figure 2) is formulated by specification of the 

velocity and diffusivity fields, observed monthly distributions on Georges Bank, and 

development rates that depend on temperature and the availability of food (Campbell et al., 

2001). The adjoint method is used to infer stage-based mortality fields, off-bank initial 

conditions, and sources of the youngest stage resolved by the model (N3).  Solutions resulting 

from the inversion procedure are then diagnosed to quantify physical and biological controls on 

the climatological abundance and distribution of C. finmarchicus on Georges Bank. 

2. Methods 

2.1. Observations 

C. finmarchicus observations were derived from samples collected by plankton pumps 

(Durbin et al., 2000a) for N 3 -C1  and the Multiple Opening and Closing Net and Environmental 

Sensing System (MOCNESS, Wiebe et al., 1985) for C  to C  during GLOBEC Georges Bank 2 6
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broad-scale surveys from January to June between 1996-1999, and from February to June in 

1995 (Durbin et al., 2000b). Monthly climatological values for each station (Figure 1) were 

obtained by averaging the observations over the five year period. Climatological values were 

then objectively analyzed (Hendry and He, 2002) to construct spatial maps. 

Monthly climatological distributions for each C. finmarchicus stage (Figure 3) form the 

basic dataset for the inverse modeling. In January, a substantial number of nauplii were present 

on the bank. The age composition (Figure 4a) showed numbers of N 3   N   N 5   N   C1  

C   C 3 , indicating the onset of reproduction. Relatively high abundances of N  and N 4  

appeared in the north portion of the bank, with the maximum abundance center of N shifted 

toward the Northeast Peak. Abundances of C1  to C  were very low on the bank; nauplii had not 

developed into these stages on the bank in January. Abundances of C 4 , C  and C  were higher 

than those of C  and C , implying that the majority of the animals in these later stages belonged 

to a prior generation. C  and C  abundances were relatively high near the Northern Flank.  

> 4

5

> > 6

5

>

> 2 > 3

3

6

2 3

5 6

In February, abundances of all stages except for C5 increased. The population structure 

was similar to January, in that relative abundance systematically decreased with stage between 

N  and C . Stage N  was abundant all across the bank. High abundance centers of N 4 -N  were 

located in the northwest portion and on the Northeast Peak. The maximum abundances of C1  to 

C 3  were slightly south of the Northeast Peak. Moderate numbers of C 6  were located along the 

Northern Flank and the eastern portion of the bank.  

3 4 3 6

In March, nauplii became more numerous all across the bank. Numbers of copepodids 

and adults increased, and the Southern Flank became a population center of copepodids, 

particularly the earlier stages C1  to C . Older stages tended to be more abundant around the 3

 5 



bank periphery and less so on the Crest. 

Abundances of copepodids continued increasing in April, whereas naupliar abundance 

remained relatively constant. The resulting springtime age structure of N  to C  was much more 

even than in the winter months. The April distribution of N  to C  on the bank was nearly 

uniform, although for most stages the Crest contained slightly lower abundance than the 

surrounding areas.  For the adult stage, the contrast in abundance between the Crest and bank 

periphery remained more pronounced. 

3 5

3 5

In May, abundances of N 3  to C  declined, especially on the Crest. In contrast, the 

abundances of C  and C 5  increased slightly from April to May, maintaining their relatively 

uniform distribution over the bank.  The overall abundance of adults remained nearly constant, 

with a decrease in abundance on the Crest compensated by modest increases along the bank 

periphery.  

3

4

In June, abundances of nauplii increased again, indicating the initiation of a new 

generation. Abundances of copepodids dropped sharply on the bank, with particularly low 

abundances of C1  to C  on the Crest. Along the bank periphery, C  to C  remained relatively 

numerous.  

6 4 6

2.2. Forward model 

The forward model is an off-line version (“Acadia”) of a finite element hydrodynamic 

model developed at the Dartmouth Numerical Methods Laboratory (Lynch et al., 1996). The 

circulation model includes tidal forcing, wind, and density driven flows (Naimie et al., 1994). 

The domain of computation includes GB, the GOM, and Scotian Shelf. Horizontal grid spacing 
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is as fine as 1 km in regions of steep topography. Archived bimonthly climatologies1 for January-

February, March-April, and May-June were used as input for off-line transport calculations.  

These simulations were run from January 15 to June 15, with observations of C. finmarchicus 

specified on a monthly basis (see section 2.3 below). The temporal resolution of the 

hydrodynamic climatology used to drive the transport model is thus coarser than that of the C. 

finmarchicus climatology.  However, the bimonthly hydrodynamic climatology is demonstrably 

consistent with available observations (Naimie, 1996; Naimie et al., 2001) and represents basic 

features of the circulation system in the domain. 

The forward model is written 

 

 

1 1

1 ( )

( )(1

i
i

i i i i i i

C
C HK C

t H
R F F C 1 )

i

δ µ δ− −

∂
+ ⋅∇ − ∇ ⋅ ∇

∂
= − + + −

v

−

 (1) 

 

Here C is the vertically averaged zooplankton concentration, H the bottom depth, v the 

vertically-averaged velocity and  the horizontal diffusivity from the bimonthly climatology. 

Prior to assimilation, the vertically integrated abundance data (Figure 3) were transformed into 

vertically averaged concentrations by dividing by the bottom depth. The modeled zooplankton 

concentrations were changed back to the vertically-integrated abundances for presentation, so as 

to be consistent with the data units of the observations. Subscript i is the stage index, with 1 to 10 

representing N  to C , respectively. R includes the input sources and mortality of N , with 

K

3 6 3 1iδ −  

a function that is 1 at i=1 and zero at other stages. F i  and iµ  represent stage-specific molting 

flux and mortality, respectively.  Sign conventions are such that molting flux is positive and 

                                                 
1 See http://www-nml.dartmouth.edu/ 
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mortality is negative (Equation 1).  

Molting fluxes at stages N -C  are computed according to 3 5

 i
i

i

CF
D

=  (2) 

where the stage-specific duration D i  depends on both temperature and food availability. In a 

food abundant condition, the temperature-limited stage duration DT is described by the 

Belehradek equation  

 ( ) ( )T i i mD a T βα= −  (3) 

The parameters ai, α, and β are specified according to Campbell et al. (2001); T  is the 

vertically-averaged bimonthly climatological temperature from Lynch et al. (1996). 

m

 

The effect of food availability on the stage duration was estimated from the Ivlev function (e.g., 

Campbell et al., 2001). At T=8 , the food dependent stage duration Do C Chl is represented as  

 ( 0 0253 ( 4 968))

1( )
(1 )CChl i Chl

i

D
b e − . ∗ + .=

−
 (4) 

with ChlC the food concentration given in terms of carbon (µg C l-1). Values of b i  were provided 

by Campbell (2003, personal communication), based on the data presented in Campbell et al. 

(2001). The food concentration was obtained from the climatological chlorophyll fields derived 

from the MARMAP observations during 1977-1987 (O’Reilly and Zetlin, 1996). Although the 

chlorophyll climatology is not contemporaneous with the C. finmarchicus climatology computed 

herein, we are not aware of any other regional climatology of in situ chlorophyll data that would 

be more suitable for the present application. The ratio of carbon to chlorophyll was set to 50 mg 

C (mg Chl a) , consistent with previous studies (e.g., Hind et al., 2000; Hirche and 1−
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Kwasniewski, 1997). 

If we assume that food concentration has the same proportionate effect at all 

temperatures, the temperature and food dependent duration D i  is thus  

 
8

( )( )
( )m

Chl i
i T i T T

T i T

DD D
D=

=

= | ∗
|

 (5) 

We regard the estimation of the stage duration described above as a first-order approximation of 

true food-temperature dependency, ignoring complex details about food-temperature interaction.  

2.3. Inversion procedure 

The inverse problem is formulated as an optimization problem, in which a cost function 

measuring the model-data misfit is minimized, while being constrained by the model dynamics 

(e.g., Tziperman and Thacker, 1989). The adjoint technique can efficiently compute the gradient 

of the cost function with respect to model parameters and other inputs by integrating the dynamic 

model forward and its adjoint model backward (e.g., Li and Wunsch, 2004) in time. A gradient-

based algorithm is then used to find the minimum of the cost function in an iterative procedure.  

The adjoint method is well documented in literature (e.g., Wunsch, 1996). This method 

has been widely applied to optimal control problems in engineering (e.g., Hasdorff, 1976). In 

meteorology and oceanography, the use of adjoint techniques can be dated back to the 1980s, for 

both sensitivity analysis (e.g., Hall, 1986) and data assimilation (e.g., Thacker and Long, 1988). 

The innovation of the Adjoint Model Compiler2, which produces the adjoint model in a semi-

automatic way, helps overcome the burden of writing the adjoint code (Giering and Kaminski, 

1998). The adjoint method has been successfully applied in ocean state estimation (e.g., Moore, 

1991; Stammer et al., 2002) and the study of transient tracers (Li and Wunsch, 2003). Lawson et 

                                                 
2 http://www.autodiff.com/tamc/ 
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al. (1995; 1996) used this method in simple ecosystem models for biological parameter 

estimation; also see Hofmann and Friedrichs (2001). This method has also been applied in the 

GB/GOM region to investigate the mechanisms controlling the distributions of adult 

Pseudocalanus spp. (McGillicuddy et al., 1998), and P. moultoni / P. newmani (McGillicuddy 

and Bucklin 2002).  Note that the present formulation of the inverse problem for C. finmarchicus 

includes more detailed population dynamics (multiple life stages, temperature- and food-

dependent stage duration, density dependent mortality) than these prior studies of 

Pseudocalanus. 

We seek to minimize the misfit between simulated and observed concentrations of C. 

finmarchicus, subject to the constraint that the forward model (Equation 1) is strictly obeyed.  

The model-data misfit, or cost function J, is defined to be 

 

                          21 1 1 ( )
stagemon obsNN N

m obs
k j imon stage obs

J
N N N

= ∑ ∑ ∑ C C−                       (6) 

 

where C  and C  are modeled and observed C. finmarchicus concentrations, N  the number 

of months in the integration period, N

m obs mon

stage  the number of modeled stages, and Nobs the number of 

observations at each stage in each month.  In this application, we have chosen to assimilate the 

objectively analyzed maps of C. finmarchicus (Figure 3) rather than the raw observations 

themselves.  This allows us to specify an “observation” at every node on the bank, so Nobs 

becomes the number of nodes (3688) in the colored areas of Figure 3.  This approach imposes a 

spatial regularization on the inversion, set by the correlation length scales specified in the 

objective analysis. 
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The cost function is minimized in an iterative procedure consisting of the following steps: 

(1) starting with initial estimate of the control parameters (the unknowns in the C. finmarchicus 

population dynamics model), the forward model is integrated to evaluate the cost function; (2) 

the adjoint model is integrated backward in time to compute the gradient of the cost function 

with respect to the control parameters; and (3) improved estimates of the control parameters are 

computed.  The control parameters for this problem are the monthly varying source/sink R (input 

source + mortality) of N , mortality 3 iµ  at stages N -C  over the whole model domain, and the 

initial off-bank fields on January 15 where observations were not present (model domain is 

larger than the area plotted in Figure 3). All control variables were allowed to vary independently 

at corresponding model nodes. The first-guess values of all control variables were set to zero.  

4 6

Within the iterative framework, the control parameters are updated with a quasi-Newton 

algorithm for solving large nonlinear optimization with simple bounds (Byrd et al., 1995; Zhu et 

al., 1994). Bound constraints on control variables keep the inferred parameters within 

meaningful limits. We impose upper bounds of zero for mortality rates (recall mortality is 

negative given the sign convention in Equation 1) and lower bounds of zero for initial 

zooplankton concentrations.  In order to speed up convergence, the control variables were 

preconditioned with = , where u i  are the control variables and a i  are the corresponding 

preconditioners. The preconditioning transformation needs not define variables with any simple 

physical interpretation, but was used to reduce the conditioning number (the ratio of the largest 

to the smallest eigenvalues) of the Hessian matrix (e.g., Tziperman and Thacker, 1989). 

Preconditioners were 20, 5.6, 2.1, 0.8, 0.1, 0.2, 0.3, 1, 7, 6 (# m

u i iu a/

-3) for the initial concentrations of 

N 3  to C  in the GOM, respectively. The values of preconditioners approximated the mean 

concentrations of C. finmarchicus observed in the southern GOM in January broad-scale surveys. 

6
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Concentrations in the northern GOM (not observed in the broad-scale surveys) can be quite 

different (Durbin et al., 2003). However, we lack sufficient data to incorporate spatial varying 

preconditioners over the entire GOM. In the Slope Water, preconditioners were set to 0.01, 0.01, 

0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1 (# m-3) for N  to C , respectively.  These values 

reflect the low abundance of C. finmarchicus in Slope Waters during January (Miller et al., 

1991).  Moreover, we force concentrations in Slope Water to zero in the forward model, based 

on the fact that the organism generally resides in strata that are too deep (ca. 500m) to be readily 

transported on-bank (Miller et al., 1991).  This forcing in Slope Waters is applied by the addition 

of an extra term on the right hand side of Equation 1, independent from the estimated mortality.  

Preconditioners were 10  (# m

3 6

5− -3 s-1) for R and 10 7−  1s−  for all mortality rates iµ  in the first few 

iterations, and 10  (# m3− -3 s-1) for R and 10 5−  1s−  for iµ  afterward. Resetting preconditioners of 

R and iµ  reflects a strategy to recover the initial conditions first, followed by the rate 

parameters. Iteration was terminated when the cost function no longer dropped significantly, 

even by resetting the preconditioners.  

3

3. Results 

3.1. Constrained model performance 

Model performance was dramatically improved by the optimal estimates of initial fields 

in January, space-time varying sources/sinks of N  and mortality rates at stages N  to C . After 

the inversion, model-data misfit was reduced by about 93%, approximately an order of 

magnitude less than that resulting from the initial values of the control variables (all zero). The 

inversion successfully reproduced the most salient features of the observations both in terms of 

4 6
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bank-wide averages (Figure 4b) and spatial distributions (Figure 5). The initial model conditions 

on GB were identical to the observations, with relatively high abundances of N 3  and N  in the 

northern portion of the bank, relatively high abundance of N  on the Northeast Peak, low 

abundances of C1  to C  on the entire bank, and moderate abundances of C  and C  along the 

bank’s northern periphery. In February, naupliar and younger copepodid stages increased 

dramatically, whereas C

4

5

4 5 6

5 and C6 showed modest decreases and increases, respectively. During 

March-April, the population of C. finmarchicus reached its peak abundance. In May, abundances 

of N  to C 3  declined, while abundances of C  to C  continued increasing. Naupliar and C3 4 6 1 

abundances increased again in June, while C  to C  decreased, especially on the Crest.  2

5

6

3.2. Inferred initial conditions 

The inversion successfully produced initial conditions in the off-bank regions in January 

(Figure 6). Low concentrations of all stages are present in the Slope Water, as the 

preconditioners express prior knowledge of the animal’s low abundance in that area during 

January. In contrast, information from the observations on GB propagated upstream into the 

GOM, with moderate abundances of C , C  and C  inferred over the deep basins of the Gulf. 

These results are generally in agreement with the 1977-1987 regional climatology for C

4 6

3 to C6 

described by Meise and O’Reilly (1996). Significant abundance of early naupliar stages 

(especially N 3 ) is also inferred. Observations in the southern GOM reported by Durbin et al. 

(1997) are consistent with these findings; however, there is a paucity of data to constrain early 

season abundance of younger stages in the northern GOM. Nevertheless, the inferred initial 

conditions suggest emergence from diapause and the start of reproduction prior to January, a 

conclusion made also by Durbin et al. (1997).  

 13 



3.3. Inferred source/sink of N 3   

 Because N3 is the youngest stage resolved in the model, its sources and sinks are 

aggregated into a single term (δi-1R in Equation 1). Positive values constitute net addition of 

animals, whereas negative values constitute net removal. The source of N3 is the unknown 

molting from the unresolved stage N2, whereas sinks of N3 include both molting to N4 (computed 

from the N3 distribution and Equation 2 above) and the unknown mortality.  Physical transport 

terms can act as both sources and sinks, depending on the spatial gradients of the organism and 

the specified velocity and diffusivity fields. The δi-1R term thus amalgamates an inferred source 

(molting from N2) and sink (mortality of N3) to achieve a solution that is consistent with 

observed distributions of N3 and the sources and sinks that are specified in the forward model 

(transport and molting to N4).   

 The sign of the inferred δi-1R term is generally positive, owing to its predominate role as a 

source of N3 copepodids (Figure 7).  In January-February, the strongest positive values appear on 

the Northeast Peak and the northwest portion of the bank, although a net source is evident all 

along the northern edge of the bank. Positive values persist on the Northeast Peak and along the 

northern edge through March-April. Mortality is prevalent on the Southern Flank inshore of the 

200m isobath from January-February to February-March. Net sources and sinks are weak 

throughout in April-May, and then become strong again along the bank periphery in May-June. 

Note that a strong source persists in the Northeast Channel throughout the simulation in order to 

maintain the high abundances of N3 observed there. 

 Another salient feature of the inferred δi-1R distribution is the presence of bands of 

alternating small-scale sources and sinks.  These tend to occur mostly along pathways of high 

transport (e.g. the Northern and Southern Flanks), where the advection terms are of the same 
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order as the biological terms (see below).  In these areas, we tend to interpret the spatial average 

of δi-1R (which is near zero along the transport pathway) rather than its detailed spatial 

distribution, as these structures may be sensitive to mesh resolution. There is an additional factor 

to consider pertaining to the strong sources and sinks at the offshore periphery of the Southern 

Flank.  They occur along the interface between on-bank areas constrained by the GLOBEC data 

and the Slope Waters south of the bank in which the copepod concentrations are forced to zero.  

These features are likely to be an artifact of the forcing applied to the Slope Water side of that 

boundary, and therefore we are not inclined to interpret results of the inversion in that area.  

3.4. Computed molting fluxes 

The computed molting fluxes quantify the rate at which individuals develop from one 

stage to the next.  Strong seasonal variability in molting flux is evident amongst the various 

stages (Figure 8). During January-February, the nauplii developed mostly on GB (except on the 

southwestern portion) and the Great South Channel. Development of copepodids on the bank 

was modest, owing to their low abundance during that period. During February-March, molting 

fluxes of nauplii were strong on GB and its adjacent off-bank regions; in the deep basins of the 

GOM, molting fluxes of the youngest naupliar stages were most prominent.  Molting fluxes of 

both nauplii and younger stage copepodids increased substantially during March-April, with the 

overall amplitude decreasing with stage in accordance with the age structure of the population. 

Molting fluxes in the GOM were highest in the youngest naupliar stages, and systematically 

decreased with stage.  In April-May, naupliar molting fluxes increased in the GOM, but 

decreased on GB.  In contrast, copepodid molting fluxes increased in both the GOM and GB. 

During May-June, molting fluxes of stages N -N 5  remained large on the bank, while those of 3
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N  to C  dropped sharply. Molting fluxes in the GOM decreased for all stages except for C6 4 4 and 

C5 copepodids, which increased in May-June. 

It is interesting that significant molting fluxes of copepodids west of the Great South 

Channel did not appear until March-April in our model. Smith and Lane (1988) found that C. 

finmarchicus copepodids did not begin to increase in the New York Bight until March. The 

increase occurred first to the east, suggesting an advective input from upstream, consistent with 

the present model.  

3.5. Inferred mortality 

The inferred mortality distributions reveal significant structure in time and space (Figure 

9). In general, highest mortalities occurred on the bank and in the adjacent areas of the Great 

South Channel, the Northeast Channel, and southern Georges Basin. Two major episodes of 

mortality affected the nauplii and early copepodids (C1  and C ), the first at the beginning of the 

growing season (January-February and February-March) and the second during May-June. 

Mortality of these stages was relatively modest during the intervening period (March-April and 

April-May). Copepodid stages C  and C  suffered comparatively little mortality throughout the 

simulated time period, except for a few hotspots in the southern Great South Channel in April-

May, and the eastern side of the Crest during May-June. Mortality of the oldest stages C  and 

C 6  was very low at the beginning of the growing season and generally increased over time.  

2

3 4

5

Spatial coherence in mortality patterns makes it possible to compute meaningful bank-

wide  averages (Figure 10). In January-February, the naupliar and younger copepodid stages 

bore the brunt of the losses: mortality peaked at copepodid C1 , and decreased monotonically to 

3
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the adult stage. In February-March, mortality of the younger naupliar stages decreased and oldest 

copepodid stages began to increase, resulting in a bimodal stage distribution of mortality. This 

bimodal characteristic persisted in March-April, albeit with lower mortality in the naupliar and 

early copepodid stages. The bimodality was accentuated in the last two bimonthly periods due to 

increasing mortality in the oldest copepodid stages and the sharply increasing mortality of N -

C 2  in May-June. Interestingly, this bimodal characteristic is robust in the spatially and 

temporally averaged mortality (Figure 11).  

5

3.6. Computed divergence of advective fluxes 

The influence of advection varied considerably in time and space, with distinct patterns 

amongst the various life stages evident in the advective flux divergence4  (Figure 12).  Positive 

(negative) values indicate an increase (decrease) in abundance by the divergence of the advective 

fluxes.   In January-February, the most pronounced signals occurred in the youngest stages, in 

association with southwestward transport of the abundant nauplii present on the NEP.  Advection 

along the Southern Flank was illuminated by alternating small-scale regions of positive and 

negative values, which average out to near zero along the transport pathway.  The overall 

magnitude of the advective terms decreased systematically with stage in January-February, such 

that there are no discernible patterns in the copepodid stages.   

From February-March into March-April, southwestward transport intensified and reached 

farther down the Southern Flank.  During this time the advective influence also spread into the 

                                                                                                                                                             
3 For the purposes of these and all subsequent bank-wide averages, Georges Bank is defined to be the area inside the 
200m isobath, bounded by 68.8ºW meridian to the west. 

4 In this context the term divergence is used to describe the mathematical operator 
x y
∂ ∂
+

∂ ∂
.  When operating on 

advective or diffusive fluxes, the result can be either positive (convergence) or negative (divergence in the more 
specific sense). 
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older stages as they increase in abundance.  Note that during this time an advective source of 

nauplii and early stage copepodids appeared west of the Great South Channel leading into the 

southern New England shelf, confirming that westward transport lies at the heart of the apparent 

consistency of the solution with the findings of the Smith and Lane (1988) described above. 

In April-May, the magnitude of the advective terms decreased in the naupliar and first 

copepodid stages as they temporarily declined in abundance.  In contrast, advection of the 

copepodid stages C2-C5 intensified, with the transport pathway beginning to reach all the way 

around the bank.  The around-bank transport became even more prominent in May-June, 

particularly in the younger naupliar stages. 

3.7. Computed divergence of diffusive fluxes 

The divergence of the diffusive fluxes (Figure 13) was dominated by small-scale 

structures, transporting these animals down-gradient. The most prominent organized feature in 

the fields is a banded structure along the southern flank of GB comprised of strips of negative 

and positive values at the edge of the shelf break.  These are associated with a net off-bank 

diffusive transport operating on the concentration gradient maintained by the high abundance of 

C. finmarchicus on the bank and its absence in the adjacent Slope Waters5.  In general, the net 

effect of diffusion in the interior of GB and in the GOM is rather modest, tending to smooth out 

peaks in the distribution of the organism. 

3.8. Bank-wide term averages 

The temporally and spatially averaged values of those physical and biological controls on 

GB provide insight into their relative effect on C. finmarchicus population dynamics (Figure 14). 

                                                 
5 Recall that the model solution is forced to zero concentration in Slope Waters south of GB. 
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On average, biological reaction terms govern the annual population cycle on GB. The space-time 

averaged convergences of advective and diffusive fluxes over GB are small relative to net 

molting fluxes (Fi-1 – Fi) and mortality. The standard deviations of physical transports, however, 

are large and vary with stage and time. Casting the term balances in terms of magnitude (Figure 

15), physical transports are clearly of the same order as the biological sources and sinks. Thus, 

physical transports are locally important, even though inputs and outputs tend to counterbalance 

each other when spatially averaged over the bank.   

Although their net effect is small, the bank-wide averages of the transport terms do 

exhibit some clear trends.  For example, diffusive transport off the bank constitutes a net loss of 

C. finmarchicus for all stages at all times.  The term maps (Figure 13) suggest this results 

primarily from diffusive flux across the shelf break on the Southern Flank (see above).  

Generally speaking, advection provides a net source of naupliar stages N4 and N5 early in the 

growing season.  In contrast, advection tends to be a net sink for the older copepodids, especially 

in April-May and May-June.  This latter effect tends to be associated with westward transport off 

the bank from the Southern Flank into the Great South Channel (Figure 12). 

The population increase of nauplii and copepodids on GB from January-February through 

March-April results mainly from biological processes. For each life stage, the input molting flux 

(Fi-1) is greater than the output molting flux (Fi). More animals are entering into the population 

than are leaving it. However, mortality strongly limits the rate of population increase. The net 

change in abundance thus results from a relatively modest difference between net molting fluxes 

and mortalities of comparable magnitude. 

The April-May period is characterized by a significant decrease in naupliar abundance.  

These results suggest this decline is primarily controlled by a decrease in net molting flux rather 
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than an increase in mortality.  Indeed, naupliar mortality actually tends to decrease during this 

period.  Interestingly, the N4 and N5 net molting fluxes become negative in April-May, indicating 

that input of new recruits is not sufficient to keep up with the maturation rate of these stages.  

That trend reverses in May-June, with N4 and N5 net molting fluxes regaining positive values. 

The May-June rebound of the naupliar stages is not mimicked in the copepodid stages, 

which all tend to decrease during that period.  For adults, the decline is brought about by an 

increase in mortality that outpaces an increase in net molting flux.  In contrast, the decline of C5 

occurs in association with a decrease in net molting flux and mortality that is only slightly lower 

than its value from the prior period.  The most precipitous decline in copepodids occurs in the 

younger stages, with C3 and C4 experiencing negative net molting fluxes during this period.  Net 

molting fluxes of C1 and C2 remain positive, so the late season decline in their abundance is 

brought about primarily by mortality in excess of net molting flux. 

 

4. Discussion 

4.1. Is the vernal population increase under biological control? 

What controls the springtime profusion of C. finmarchicus on GB?  The results presented 

herein are suggestive of two mechanisms.  First, the inverse procedure generated off-bank initial 

conditions that contained significant numbers of both nauplii and copepodid stages in the deep 

basins of the GOM upstream of GB (Figure 6).  The inferred initial conditions are consistent 

with available observations of the later stage copepodids (Meise and O’Reilly, 1996), and 

indicate that advective supply contributes to the vernal population increase on GB.  Indeed, 

earlier modeling studies have focused on the importance of this pathway (Lynch et al., 1998; 
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Miller et al., 1998; Hannah et al., 1998).  Despite this apparent advective connection, bank-wide 

average term balances indicate the predominance of biological processes over physical transport 

in controlling temporal changes in abundance (Figure 14).   

In order to quantify the impact of the upstream sources, an additional inversion was 

undertaken in which all off-bank sources were eliminated.  Specifically, all off-bank 

concentrations were set to zero in the initial condition, and the off-bank sources of N3 (R in 

Equation 1) were assumed to be null throughout the duration of the simulation.  The resulting 

abundance fields (not shown) are quite similar to the baseline case (Figure 5), although the fit to 

the observations (as reflected in the final value of the cost function) is not quite as good as the 

solution in which the off-bank sources are active.   

How was the inverse model able to match the observations in the absence of upstream 

sources?  One way is to increase the inferred local source of N3 on Georges Bank.  Indeed, the 

inversion procedure did increase the net source of N3 ( Ri 1−δ  in Equation 1; see Figure 7 for maps 

from the baseline inversion) by an average of 33% on the bank during the period from January to 

June. The other way to counterbalance elimination of advective transport of C. finmarchicus to 

Georges Bank in the second model is to decrease the inferred mortality rates (Figure 16).  

Surprisingly, the reduction in mortality required to compensate for the lack of upstream sources 

is indistinguishably small given the range of experimental determinations of mortality (see 

section 4.2 below).  

That the sources of N3 and mortality fields inferred in the two cases are so similar 

indicates upstream sources do not control the springtime population increase (Figure 16). If 

upstream sources were critical, then fitting the data with the second model would have required a 

large increase (on the order of 100% or more) in the local source of N3 on Georges Bank, and/or 
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unrealistically low values of mortality. Alternatively, the second model might not have been able 

to fit the data at all.  The fact that the second model can match the observations with only modest 

adjustments to the two control parameters therefore suggests a secondary role for upstream 

sources during this time period. 

It is important to note that this result does not completely refute the relevance of 

upstream sources to the springtime population increase.  These calculations are based on initial 

conditions for GB in January that were undoubtedly influenced to some degree by upstream 

sources.  However, it is not possible to quantify the impact of upstream sources on the initial 

conditions.  What is clear from these experiments is that upstream sources need not be invoked 

to simulate the observed population increase from January to June.   

4.2. Mortality estimates 

C. finmarchicus is subject to predation from a variety of animals, including chaetognaths, 

ctenophores, omnivorous copepods, and fish (e.g., Davis, 1984b; Sullivan and Meise, 1996; 

Dalpapado et al., 2000; Sell et al., 2001). The range of mortalities inferred herein (0.01-0.2 d-1) 

generally falls within the envelope of observational estimates of predation6. Interestingly, some 

of the highest inferred mortalities occur on the Crest, where the presence of voracious planktonic 

hydroids has been estimated to result in removal of 50-100% of the daily production of young 

copepods (Madin et al., 1996). 

The general pattern of the inferred stage-specified mortality (Figure 11) is similar to 

estimates derived from a vertical life table analysis of the same data by Ohman et al. (2002).  

Both studies suggest relative maxima in mortality in the late naupliar / early copepodid stages 

                                                 
6 Specific rates of predation on C. finmarchicus copepodids based on observed predator abundance and feeding rates 
are available at: http://userwww.sfsu.edu/~bioocean/research/gbpredation/gbpredation1.html. 
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and the later copepodid stages7.  However, the mortalities estimated herein are systematically 

lower than those reported by Ohman et al. by approximately 20-40%.   

There are several possible reasons for these differences.  To begin with, the vertical life 

table approach is not spatially explicit and therefore cannot account directly for the effects of 

advection (Aksnes and Ohman 1996; Aksnes et al., 1997).  However, advection is an unlikely 

explanation for the differences in the mortality estimates for two reasons.  First, analysis of the 

present model solution indicates the net impact of advection is small relative to molting and 

mortality terms in the population dynamics equation.  Second, results presented in the preceding 

section illustrate how elimination of upstream sources can be compensated by a systematic 

decrease in mortality estimated by the inversion procedure.  By analogy we speculate that the 

inclusion of upstream sources in the vertical life table approach would tend to increase the 

resulting mortality estimates, not decrease them. 

Another difference between the present study and Ohman et al. (2002) is the temperature 

used to calculate stage duration in the Belehradek function (Equation 3).  Our model uses the 

vertically averaged climatological temperature for each node, whereas Ohman et al. used the 

observed temperature at the mean depth occupied by each developmental stage at each station. 

To estimate the potential impact of vertical variations in temperature on the mean stage duration, 

we computed spatial maps of the vertically averaged stage duration based on the three-

dimensional climatological temperature and compared them with stage durations based on the 

vertically averaged temperature.  Ratios of the two quantities on Georges Bank indicate minor 

differences, with the stage durations based on vertically averaged temperature slightly longer 

than those based on the three-dimensional climatology (2.4±1.7%, 2.3±1.3%, and 3.7±1.6%, for 

                                                 
7 Ohman et al. (2002) report a third peak in mortality between the egg and second naupliar stage which is not 
resolved by the present study because the youngest stage included herein is N3. 
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January-February, March-April, and May-June, respectively).  Thus the nonlinear relationship 

between stage duration and temperature gives rise to a potential bias, in that the decrease in stage 

duration in warmer surface waters overshadows the increased stage duration in cooler waters at 

depth.  The longer stage duration predicted by the vertically averaged model translates linearly 

into decreased mortality estimates (Equations 1 and 2). However, the 2-4% increases in mortality 

that would result from more realistic treatment of temperature variability would be barely 

perceptible in Figure 11.  Therefore, it does not appear that temperature effects on stage duration 

are sufficient to explain the differences between our mortality estimates and those of Ohman et 

al. (2002).  Nevertheless, this possibility cannot be discounted completely because the above 

comparison assumes uniform vertical distribution of the animal.  Covariance of fluctuations in 

animal abundance and temperature could introduce additional bias. 

A potentially more important difference between the two studies is the inclusion of food 

limitation.  Evaluation of the ratio between stage durations based on temperature alone (Equation 

3) with that derived from the combined effects of temperature and food (Equation 5) permits 

quantification of this effect (Table 1). Food limitation is significant in January-February, with 

stage durations on Georges Bank 55% longer than they would be based on temperature alone. 

This finding is consistent with the somewhat lower RNA:DNA ratios observed in C. 

finmarchicus in January, which is indicative of food limitation (Wagner, 2000).  The March-

April phytoplankton bloom relaxes this effect, with the food-limited stage durations only 12% 

longer on average.  Food limitation increases slightly in May-June, with the average stage 

duration being 15% longer than the temperature limited rate.  Clearly the effect of food is 

significant, and the mean increase in stage duration (27%) translates into commensurately lower 

estimates of mortality.  Thus food limitation is a plausible explanation of the systematic 

 24 



differences between the present estimates of mortality and those of Ohman et al. (2002).  Indeed, 

Ohman et al. discuss the potential impact of food limitation, noting that including this effect 

could potentially reduce their mortality estimates for feeding stages (N3 to adult) by up to a 

factor of two. 

4.3. What causes the absence of late-stage copepodids on the Crest in June? 

The most salient characteristic of the late spring / early summer decline in copepodids is 

the near absence of older stages on the Crest (Figure 3).  Term balances computed for the Crest 

region inside the 60m isobath indicate that this is primarily a result of mortality, although the 

negative net molting fluxes in C3 and C4 also contribute to the decline of those stages (Table 2). 

Advective and diffusive terms are 1-2 orders of magnitude smaller.  The modest influence of the 

transport terms is also consistent with seasonal modulation of hydrodynamic exchange between 

the Crest and surrounding waters (Hannah et al., 1998; McGillicuddy et al., 1998).  Specifically, 

development of stratification in the summer accelerates an around-bank jet that tends to isolate 

the Crest from upstream supply of animals.   

This apparent mortality of copepodids on the Crest is likely due to predation (see above), 

but there are other factors that could be important.  C. finmarchicus is a boreal animal that 

prefers colder temperatures.  Seasonal input of heat into the well-mixed waters of the Crest could 

make that environment unsuitable, whereas stratified waters of the bank periphery remain more 

hospitable because cooler waters are accessible at depth.  Satellite imagery indicates sea surface 

temperatures on the crest reach 10-12ºC in late spring / early summer (Bisagni et al. 2001).  

However, these temperatures do not cause deleterious effects on C. finmarchicus reared in the 

laboratory (Campbell et al. 2001).  Nevertheless, it is possible that more subtle effects of 

increasing temperatures might adversely affect natural populations on the Crest, since this is 
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close to the observed upper limit for field populations of C. finmarchicus in other parts of its 

range (Bonnet et al., 2005). 

4.4. Caveats 

There are a number of caveats that must be considered in the interpretation of these 

results.  To begin with, it is not possible to demonstrate a priori that the assimilation procedure 

results in a global minimum of the cost function.  The existence of local minima can be 

investigated by starting from different initial guesses of the control variables, as well as 

restarting the iterative procedure with perturbations to the control variables.  Both of these 

approaches were pursued, and convergence to the reported solution appears to be stable. That the 

resulting solution closely resembles the observations (c.f. Figures 3-5) further attests to 

satisfactory solution of the minimization problem. 

Several aspects of the basic formulation of the inverse problem are also worthy of note.  

First of all, the physical transport fields are specified with certainty. If the observed changes in 

abundance are incompatible with the prescribed circulation, the inversion technique will adjust 

the control variables (off-bank initial conditions, sources/sinks of N3, and mortality fields) to 

make up for those discrepancies. In this sense, it is possible for deficiencies in the circulation 

model to lead to anomalous biological inference.  However, the most salient characteristics of the 

solutions presented herein are associated with robust features of the circulation on Georges Bank 

that are well documented in the literature (Naimie, 1996; Naimie et al., 2002). Nevertheless, the 

potential for nonlinear impacts of time-dependent flows (such as storm events) on the mean 

behavior of the system remains to be investigated. In this context, it would be beneficial to 

investigate the sensitivity of the results to the details of the hydrodynamic fields by performing 

biological inversions on ensembles of perturbations to the climatology that are all equally valid 
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with respect to observations. 

This is not to say that the vertically averaged model used herein is completely sufficient, 

especially in stratified conditions. Moreover, C. finmarchicus is capable of controlling its vertical 

position in the water column by swimming, and that behavior is not included in the present 

model.  Indeed, earlier studies have illustrated the potential for layered organism distributions 

and vertical shear to have significant impact on the supply and retention of C. finmarchicus on 

Georges Bank.  For example, the model of Lynch et al. (1998) showed how transport of 

copepodids from the deep basins of the Gulf of Maine to Georges Bank is favored by upward 

swimming of copepodids into the surface Ekman layer, where wind-driven surface currents 

provide a more direct transport pathway than the more circuitous flows at depth.  The fact that 

this structure is not fully represented in the present model would tend to diminish the importance 

of advective supply of C. finmarchicus to the bank, and is therefore an important caveat in the 

present assessment of its importance relative to local biological processes.  On the other hand, 

surface-intensified transport could also play a role in the export of C. finmarchicus off the bank.  

If so, then the vertically-averaged model could be too retentive, reducing the need for local 

sources to maintain the population.  It remains to be seen whether vertical structure has more 

impact on supply or removal processes, and the degree to which these might compensate for each 

other in a vertically averaged model.  Clearly, the inclusion of vertical dimension is an important 

avenue for future study. 

5. Conclusions 

  The fundamental question posed in an inverse modeling approach is whether or not a set 

of data fit a particular model.  In the present case, the answer is yes.  Observations of the 

climatological distribution of C. finmarchicus were assimilated into a physical-biological model 

 27 



based on the climatological circulation.  The population dynamics model specified temperature- 

and food-dependent stage duration, and the control parameters were off-bank initial conditions, a 

source term for the youngest stage in the model (N3), and a seasonally varying stage-specific 

mortality field.  This model fits the data insofar as the resulting inverse solutions capture the 

essential features of the observed distributions with values of the control parameters that are not 

unrealistic. 

A more stringent test of the model would be provided by direct measurements of the 

control parameters.  In principle it would be possible to alleviate the need to invert for off-bank 

initial conditions and sources of N3 by expanding the geographic coverage of the measurements 

and sampling the distributions of eggs and the first two naupliar stages.  Such observations 

would permit a more complete model of the life cycle, spanning egg through adult stages and 

including reproduction. However, the issue of mortality remains much more problematic.  C. 

finmarchicus is subject to predation by a wide variety of organisms, each with their own unique 

distribution, abundance, and feeding characteristics.  Observational specification of space-time 

fluctuations in the aggregate impact of all predators on the target species is clearly not practical.  

Perhaps the most tractable way forward is to undertake comprehensive predation studies in a few 

key locations, and then invert for spatial variations in the rates that are constrained by such 

process studies. 

Diagnosis of the inverse solutions provides some insight into the mechanisms controlling 

the mean January-June dynamics of C. finmarchicus on Georges Bank.  That the inversion for 

initial conditions reached upstream and deposited animals in the deep basins of the Gulf of 

Maine implies connectivity between these regions on seasonal time scales.  However, the 

sensitivity experiment in which upstream sources were set to zero showed that the model could 
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still fit the data with only modest reductions in the inferred mortality and a minor increase in the 

local source of N3.  Thus, advective delivery of animals from upstream does not appear to be a 

major contributor to the vernal population increase in this model.  In other words, the initial 

conditions prescribed in January provide a sufficient seed population.  Of course, the initial 

conditions themselves were influenced to some degree by upstream sources.  Clearly the broader 

question of self-sustenance of C. finmarchicus on Georges Bank begs for a study of the entire 

annual cycle.  Observations from the MARMAP (Sherman et al., 1996) and ECOMON (Link 

and Brodziak, 2002) programs would be quite useful for such purposes.  In any case, the present 

results indicate the GLOBEC broad-scale surveys resolve a clear signal in the mean seasonal 

cycle of C. finmarchicus population dynamics that is not severely compromised by advective 

influences. 

An important next step is to investigate interannual variability.  Combination of 

climatological physics with climatological biology has illuminated some of the controls on the 

January-June monthly mean distribution of C. finmarchicus for 1995-1999.  However, both the 

physical environment and the distribution of C. finmarchicus are prone to significant departures 

from climatology (Mountain and Taylor, 1998; Sherman et al., 1998; Greene and Pershing, 2000; 

Conversi et al., 2001; Durbin and Casas, this volume).  There are several opportunities to explore 

interannual variability in this context.  For example, the present results could be compared to an 

analogous inversion of the MARMAP years (1977-1987) to investigate changes in the mean state 

of the system between these two epochs.  Another promising avenue would be to compare 

physical-biological hindcasts of specific years based on detailed three-dimensional 

hydrodynamic simulations being constructed for the GLOBEC era (Chen et al. 2003).  Lastly, 

the significance of basin-scale processes in governing both the mean state and interannual 
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variability in this region remains to be investigated.  Basin-scale models of C. finmarchicus 

population dynamics are emerging (Speirs et al., 2005), and physical-biological interactions at 

these large scales (e.g. Heath et al., 2004) are a key topic for further research. 
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Figure Captions  
 
Figure 1:  Station locations of the U.S. GLOBEC GB broad-scale surveys between 1995-1999. 
MOCNESS samples are available at stations denoted by the black dots, and pump samples are 
available at stations denoted by circles. 
 
Figure 2: Schematic diagram of the forward model (top), list of the specified and inferred model 
inputs (middle), and space/time characteristics of the various components used in the inverse 
problem described herein (bottom). 
 
Figure 3: Mean monthly distributions of vertically integrated Calanus finmarchicus N 3 -C 6  
[log10 (1 + #/m )] observed between 1995-1999. Station locations are indicated by black dots, 
which consists of pump samples for N

2

3-C1 (open circles in Figure 1) and MOCNESS samples for 
C2-C6 (black dots in Figure 1).  Geographic coverage of the maps is confined to the area in which 
the expected error computed in the objective analysis is less than approximately 40 percent.  
Isobaths shown are 60, 100, and 200m. 
 
Figure 4: Observed (upper panel) and simulated (lower panel) bank-wide averages of stage-
specific abundance. 
 
Figure 5: Modeled abundances of C. finmarchicus [vertically integrated, presented in units of 
log10 (1 + #/m )] after data assimilation, with the same mapping area as Figure 3. Isobaths 
shown are 60, 100, and 200m. 

2

  
Figure 6: Optimal initial fields for C. finmarchicus stages N3 to C6 [vertically integrated, 
presented in units of log (1 + #/m )]. The first estimates of initial values outside the data area 
(white area in Figure 3) are zeros. Isobaths shown are 60  and 200m. 

10
2

 
Figure 7: Inferred net sources/sinks of N 3  (vertically integrated, presented in units of  # m-2 s-1).  
Isobaths shown are 60  and 200m. 
 
Figure 8: Computed monthly mean molting fluxes (vertically integrated, presented in units of # 
m-2 s-1). Isobaths shown are 60  and 200m. 
 
Figure 9: The spatial distribution of the inferred mortality rates (d-1).  Plot area is zoomed in on 
Georges Bank to show detail in that region.  Mortality estimates are negligible in the off-bank 
areas in which concentrations are not constrained by observations. Isobaths shown are 60  and 
200m. 
 
Figure 10: Time series of mortality rates (d 1− ) spatially averaged on GB. 
 
Figure 11: Temporal mean (January-June) of spatially averaged mortality rates (d ) on GB. 1−
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Figure 12: Computed convergence of the monthly-mean advective fluxes (vertically integrated, 
presented in units of  # m-2 s-1). Isobaths shown are 60  and 200m. 
 
Figure 13: Computed convergence of the monthly-mean diffusive fluxes (vertically integrated, 
presented in units of  # m-2 s-1). Isobaths shown are 60  and 200m. 
 
Figure 14: Temporally and spatially averaged term balances on GB. Here Adv(ection)= 

; Dif(fusion)= ; Ten(dency)= ( iC−∇⋅ V ) t( )iHK C H∇⋅ ∇ / iC∂ /∂ ; Mor(tality)= i iCµ ; Mol(ting 
flux, net)=F i -F i , i=2, 3,...,10. Values are presented on a log scale with units of log1− 10(1 + # m-3 
d-1). Blue bars represent negative values, red bars represent positive values. Gray bars represent 
standard deviations.  
 
Figure 15: Temporally and spatially averaged term magnitudes on GB. Here Adv(vection)= 

; Dif(fusion)= ∇⋅ ; Ten(dency)= ( iC∇⋅ V ) t( )iHK C H∇ / iC∂ /∂ ; Mor(tality)= i iCµ ; Mol(ting flux, 
net)=F i -F i , i=2, 3,...,10. Values are presented on a log scale with units of log1− 10(1 + # m-3 d-1). 
Term magnitudes are shown as blue bars; gray bars represent standard deviations.  
 
Figure 16: Temporal mean (January-June) of spatially averaged mortality rates (d − ) on GB for 
the baseline solution (black bars as in Figure 11) and the solution in which all upstream sources 
were set to zero (gray bars; see text). 

1

 
Figure 17: Cartoon schematic comparing the results of the baseline inversion with a sensitivity 
experiment in which all upstream sources of C. finmarchicus were set to zero. 
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Time Period Stage 

 N4 N5 N6 C1 C2 C3 C4 C5 C6 
January-
February 

57±24% 54±23% 52±23% 58±24% 55±23% 59±24% 57±24% 53±23% 51±23% 

March-April 14±17% 11±17% 9±17% 14±17% 12±17% 15±17% 13±17% 11±17% 9±17% 
May-June 17±12% 14±11% 13±11% 17±12% 15±11% 18±12% 16±11% 14±11% 12±11% 

 
Table 1. Mean and standard deviation of the percentage increase in stage duration predicted by a 
temperature- and food-dependent model over that based on temperature alone.  Only nodes on 
Georges Bank included in the computations. 
 
 
 
 
 
 
 

Stage Term 
 Molting  

F i -F i   1−

Mortality
i iCµ  

Advection
( )iC−∇⋅ V

Diffusion 
( )iHK C H∇⋅ ∇ /

Tendency 
iC t∂ /∂    

C   2 0.9661    -2.2759  0.1227   -0.0769    -1.2640 

C   3 -1.4326    -1.1062  0.1061   -0.0804    -2.5131 
C   4 -2.2027    -1.8964  0.0072   -0.1429    -4.2348 

C   5 3.0676    -5.1040  0.0739   -0.1368    -2.0993 
C   6 6.1338    -6.3514  -0.1780   -0.0883    -0.4839 

 
Table 2. Space-time averaged values of the biological and physical controls of C -C  on the 
Crest between May-June. Units are # m

2 5
-3 d-1. 
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