134 research outputs found

    Effect of conjugated linoleic acid on inhibition of prolyl hydroxylase 1 in hearts of mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Results from different trails have provided evidence of protective effects of <it>cis-</it>9,<it>trans</it>-11-conjugated linoleic acid (CLA) on cardiovascular diseases. But the inhibition of prolyl hydroxylase 1 (PHD1) associated with induction of hypoxia inducible factors (HIFs) by CLA in these protective effects has never been reported before. The objective of this study was to evaluate if the two predominant <it>cis-</it>9,<it>trans</it>-11 (c9, t11), <it>trans</it>-10,<it>cis</it>-12 (t10, c12) CLA isomers and mixture of these two isomers can inhibit PHD1 with induction of HIFs in myocardium in mice and subsequent effects on myocardium metabolism.</p> <p>Results</p> <p>CLA mixture and c9, t11 CLA inhibited PHD1 protein expression and increased the levels of protein and mRNA in HIF-2α in myocardium in mice. Meanwhile, CLA mixture and c9, t11 CLA also elevated the expression of HIF related transcriptional factors like PDK4 and PPARα. The reprogramming of basal metabolism in myocardium in mice was shown on increasing of GLUT4 gene expression by c9, t11 CLA supplemented group. UCP2 was increased by CLA mixture and c9, t11 CLA for attenuating production of ROS.</p> <p>Conclusion</p> <p>CLA mixture and c9, t11 CLA could inhibit PHD1 and induce HIF-2α in myocardium in mice, which is associated with upregulation of PDK4 by activation of PPARα. This process also implies a reprogramming of basal metabolism and oxidative damage protection in myocardium in mice. All the effects shown in hearts of mice are due to c9, t11 CLA but not t10, c12 CLA.</p

    Homologous illegitimate random integration of foreign DNA into the X chromosome of a transgenic mouse line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is not clear how foreign DNA molecules insert into the host genome. Recently, we have produced transgenic mice to investigate the role of the <it>fad2 </it>gene in the conversion of oleic acid to linoleic acid. Here we describe an integration mechanism of fad2 transgene by homologous illegitimate random integration.</p> <p>Results</p> <p>We confirmed that one <it>fad2 </it>line had a sole integration site on the X chromosome according to the inheritance patterns. Mapping of insertion sequences with thermal asymmetric interlaced and conventional PCR revealed that the foreign DNA was inserted into the XC1 region of the X chromosome by a homologous illegitimate replacement of an entire 45,556-bp endogenous genomic region, including the ovarian granulosa cell tumourigenesis-4 allele. For 5' and 3' junction sequences, there were very short (3-7 bp) common sequences in the AT-rich domains, which may mediate the recognition of the homologous arms between the transgene and the host genome. In addition, analysis of gene transcription indicated that the transgene was expressed in all tested <it>fad2 </it>tissues and that its transcription level in homozygous female tissues was about twice as high as in the heterozygous female (p < 0.05).</p> <p>Conclusions</p> <p>Taken together, the results indicated that the foreign <it>fad2 </it>behaved like an X-linked gene and that foreign DNA molecules were inserted into the eukaryotic genome through a homologous illegitimate random integration.</p

    RVM Classification of Hyperspectral Images Based on Wavelet Kernel Non-negative Matrix Fractorization

    Get PDF
    A novel kernel framework for hyperspectral image classification based on relevance vector machine (RVM) is presented in this paper. The new feature extraction algorithm based on Mexican hat wavelet kernel non-negative matrix factorization (WKNMF) for hyperspectral remote sensing images is proposed. By using the feature of multi-resolution analysis, the new method of nonlinear mapping capability based on kernel NMF can be improved. The new classification framework of hyperspectral image data combined with the novel WKNMF and RVM. The simulation experimental results on HYDICE and AVIRIS data sets are both show that the classification accuracy of proposed method compared with other experiment methods even can be improved over 10% in some cases and the classification precision of small sample data area can be improved effectively

    Structure, Optical Properties, and Photocatalytic Activity towards H 2

    Get PDF
    High quality single crystalline GaN nanowires with large aspect ratio (>100) are synthesized on n-type Si (111) substrate via Au-catalyzed vapor-liquid-solid process. Morphology, crystal structure, and optical property of the as-synthesized GaN nanowires are characterized by means of X-ray diffraction, scanning/transmission electron microscopy, UV-vis diffuse reflection spectroscopy, and room temperature photoluminescence. The results indicate that the as-prepared GaN nanowires with a large aspect ratio are well crystallized in the hexagonal wurtzite structure, and a slight blue shift appears in both the absorption edge and emission peak probably due to the quantization effect. Photocatalytic H2 evolution over the as-prepared GaN nanowires is performed with the incorporation of Pt or Rh as the cocatalyst, exhibiting greatly enhanced capability compared to the GaN powder tested under the same conditions. Moreover, photocatalytic CO2 reduction over the GaN nanowires is also successfully realized using Pt or Rh as the cocatalyst, depending on which the products show a strong selectivity inherently related to the reductive electrons transferred by cocatalyst

    The effects of dietary fiber level on nutrient digestibility in growing pigs

    Get PDF
    The objective of this study was to investigate the effects of total dietary fiber level on nutrient digestibility and the relationship between apparent total tract digestibility of total dietary fiber, and soluble dietary fiber, insoluble dietary fiber and available energy. Sugar beet pulp was as the only fiber source. The experiment was designed as a 6 × 6 Latin square with an adaptation period of 7 d followed by a 5-d total collection of feces and urine. Feed intake tended to decrease (P =0.10) as total dietary fiber level increased. The apparent total tract digestibility of dry matter, crude protein and gross energy decreased (P <0.01) when total dietary fiber increased but the digestibility of soluble dietary fiber and insoluble dietary fiber increased (P <0.01). The digestible energy and metabolizable energy content of diets decreased (P <0.01) as the total dietary fiber increased

    Genomic insights into antimicrobial potential and optimization of fermentation conditions of pig-derived Bacillus subtilis BS21

    Get PDF
    Bacillus spp. have been widely used as probiotic supplements in animal feed as alternatives to antibiotics. In the present study, we screened a Bacillus subtilis strain named BS21 from pig feces. Antimicrobial activities, whole genome mining and UHPLC-MS/MS analysis were used to explore its antimicrobial mechanism. Strain BS21 showed Significant growth inhibition against a variety of animal pathogens, including Escherichia coli, Salmonella enterica Pullorum, Salmonella enterica Typhimurium, Citrobacter rodentium, Shigella flexneri and Staphylococcus aureus. Seven gene clusters involved in antimicrobial biosynthesis of secondary metabolites were encoded by strain BS21 genome, including four non-ribosomal peptides (bacillibactin, fengycin, surfactin and zwittermicin A), one ribosomal peptide (subtilosin A), one dipeptide (bacilysin) and one polyketide (bacillaene). Among them, production of surfactin, fengycin, bacillibactin, bacilysin and bacillaene was detected in the supernatant of B. subtilis strain BS21. To develop the potential application of BS21 in animal production, medium components and fermentation parameters optimization was carried out using response surface methodology (RSM). Production of antimicrobial secondary metabolites of strain BS21 was increased by 43.4%, and the best medium formula after optimization was corn flour 2%, soybean meal 1.7% and NaCl 0.5% with optimum culture parameters of initial pH 7.0, temperature 30°C, rotating speed at 220 rpm for 26 h. Our results suggested that strain BS21 has the potential for large-scale production and application as a potential source of probiotics and alternative to antibiotics for animal production

    The Effect of Inclusion Level of Soybean Oil and Palm Oil on Their Digestible and Metabolizable Energy Content Determined with the Difference and Regression Method When Fed to Growing Pigs

    Get PDF
    This experiment was conducted to determine the effects of inclusion level of soybean oil (SO) and palm oil (PO) on their digestible and metabolism energy (DE and ME) contents when fed to growing pigs by difference and regression method. Sixty-six crossbred growing barrows (Duroc×Landrace×Yorkshire and weighing 38.1±2.4 kg) were randomly allotted to a 2×5 factorial arrangement involving 2 lipid sources (SO and PO), and 5 levels of lipid (2%, 4%, 6%, 8%, and 10%) as well as a basal diet composed of corn and soybean meal. The barrows were housed in individual metabolism crates to facilitate separate collection of feces and urine, and were fed the assigned test diets at 4% of initial body weight per day. A 5-d total collection of feces and urine followed a 7-d diet adaptation period. The results showed that the DE and ME contents of SO and PO determined by the difference method were not affected by inclusion level. The DE and ME determined by the regression method for SO were greater compared with the corresponding respective values for PO (DE: 37.07, ME: 36.79 MJ/kg for SO; DE: 34.11, ME: 33.84 MJ/kg for PO, respectively). These values were close to the DE and ME values determined by the difference method at the 10% inclusion level (DE: 37.31, ME: 36.83 MJ/kg for SO; DE: 34.62, ME: 33.47 MJ/kg for PO, respectively). A similar response for the apparent total tract digestibility of acid-hydrolyzed ether extract (AEE) in lipids was observed. The true total tract digestibility of AEE in SO was significantly (p<0.05) greater than that for PO (97.5% and 91.1%, respectively). In conclusion, the DE and ME contents of lipid was not affected by its inclusion level. The difference method can substitute the regression method to determine the DE and ME contents in lipids when the inclusion level is 10%

    Determination and prediction of the digestible and metabolizable energy contents of corn germ meal in growing pigs

    Get PDF
    Objective This experiment was conducted to determine the chemical composition, digestible energy (DE) and metabolizable energy (ME) contents of corn germ meals (CGM) and to develop equations to predict the corresponding energy contents based on the chemical characteristics of individual CGM. Methods Sixty-six barrows (initial body weight = 51.3±4.6 kg) were allotted to 11 diets including a basal diet and 10 CGM test diets in a completely randomized design. In the test diets, CGM was included in replacement of 30% of the energy-providing ingredients in the basal diet, resulting in a final inclusion rate of 29.1%. Each diet was fed to 6 barrows housed in individual metabolism crates for a 7-d acclimation period followed by a 5-d total but separate collection of feces and urine. Results Considerable variation was observed in acid-hydrolyzed ether extract, ether extract, ash, calcium (Ca) and total phosphorus contents among the CGM samples. On dry matter (DM) basis, the DE and ME contents of the CGM ranged from 10.22 to 15.83 MJ/kg and from 9.94 to 15.43 MJ/kg, respectively. The acid detergent fiber (ADF) contents were negatively correlated with the DE and ME contents of CGM samples. The best-fit prediction equations for the DE and ME values (MJ/kg DM) of the 10 CGM were: DE = 26.85–0.28 insoluble dietary fiber (%)–17.79 Ca (%); ME = 21.05–0.43 ADF (%)–11.40 Ca (%). Conclusion The chemical compositions of CGM vary depending on sources, particularly in ether extract and Ca. The DE and ME values of CGM can be predicted based on their chemical composition in growing pigs
    corecore