161 research outputs found

    High-energy, shock-front assisted resonant radiation in the normal dispersion regime

    Get PDF
    We present a simple yet effective theory that predicts the existence of resonant radiation bands in the deep normal group velocity dispersion region of a medium, even in absence of a zero-group velocity dispersion point. This radiation is evident when the medium is pumped with high-energy ultrashort pulses, and it is driven by the interplay between the Kerr and the shock terms in the NLSE. Accurate experiments performed in bulk silica fully support the theoretical phase-matching condition found by our theory.Comment: 5 pages, 3 figure

    Hesitant Triangular Fuzzy Information Aggregation Operators Based on Bonferroni Means and Their Application to Multiple Attribute Decision Making

    Get PDF
    We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly, definition and some operational laws of hesitant triangular fuzzy elements are introduced. Then, we develop some hesitant triangular fuzzy aggregation operators based on Bonferroni means and discuss their basic properties. Some existing operators can be viewed as their special cases. Next, we apply the proposed operators to deal with multiple attribute decision-making problems under hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness

    Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals

    Get PDF
    Whispering-gallery-mode resonators have been extensively used in conjunction with different materials for the development of a variety of photonic devices. Among the latter, hybrid structures, consisting of dielectric microspheres and colloidal core/shell semiconductor nanocrystals as gain media, have attracted interest for the development of microlasers and studies of cavity quantum electrodynamic effects. Here we demonstrate single-exciton, single-mode, spectrally tuned lasing from ensembles of optical antenna-designed, colloidal core/shell CdSe/CdS quantum rods deposited on silica microspheres. We obtain single-exciton emission by capitalizing on the band structure of the specific core/shell architecture that strongly localizes holes in the core, and the two-dimensional quantum confinement of electrons across the elongated shell. This creates a type-II conduction band alignment driven by coulombic repulsion that eliminates non-radiative multi-exciton Auger recombination processes, thereby inducing a large exciton–bi-exciton energy shift. Their ultra-low thresholds and single-mode, single-exciton emission make these hybrid lasers appealing for various applications, including quantum information processing

    Fabrication and Properties of Carbon- Encapsulated Cobalt Nanoparticles over NaCl by CVD

    Get PDF
    Carbon-encapsulated cobalt (Co@C) nanoparticles, with a tunable structure, were synthesized by chemical vapor deposition using Co nanoparticles as the catalyst and supported on a water-soluble substrate (sodium chloride), which was easily removed by washing and centrifugation. The influences of growth temperature and time on the structure and magnetic properties of the Co@C nanoparticles were systematically investigated. For different growth temperatures, the magnetic Co nanoparticles were encapsulated by different types of carbon layers, including amorphous carbon layers, graphitic layers, and carbon nanofibers. This inferred a close relationship between the structure of the carbon-encapsulated metal nanoparticles and the growth temperature. At a fixed growth temperature of 400 °C, prolonged growth time caused an increase in thickness of the carbon layers. The magnetic characterization indicated that the magnetic properties of the obtained Co@C nanoparticles depend not only on the graphitization but also on the thickness of the encapsulated carbon layer, which were easily controlled by the growth temperatures and times. Optimization of the synthesis process allowed achieving relatively high coercivity of the synthesized Co@C nanoparticles and enhancement of its ferromagnetic properties, which make this system promising as a magnetic material, particularly for high-density magnetic recording applications

    The Critical Role of nπ* States in the Photophysics and Thermally Activated Delayed Fluorescence of Spiro Acridine-Anthracenone

    Get PDF
    The molecular photophysics and thermally activated delayed fluorescence (TADF) in spiro compounds are distinct because of the rigid orthogonal C–C bridging bond between donor and acceptor. The photophysics is found to be highly complex, with unprecedented multiple anti-Kasha emissions from three different singlet states, two of which are one-photon forbidden. The TADF mechanism is critically controlled by local acceptor nπ* states; the singlet nπ* state undergoes rapid intersystem crossing populating an energetically close acceptor ππ* triplet state. The acceptor triplet nπ* state couples nonadiabatically to a CT triplet state mediating reverse intersystem crossing. When the nπ* and CT states are energetically close, TADF is greatly enhanced with rISC rate reaching 107 s–1. We observe neither DF from the singlet nπ* state nor electron transfer (ET) to form the 1CT because there is no ET driving force; however, ET from the higher-energy donor singlet ππ* state readily occurs along with donor emission

    Aqua­azido­{2,2′-[o-phenylenebis(nitrilo­methyl­idyne)]diphenolato}manganese(III) hemihydrate

    Get PDF
    In the title compound, [Mn(C20H14N2O2)(N3)(H2O)]·0.5H2O, the MnIII ion is chelated by the N,N′,O,O′-tetra­dentate Schiff base ligand and further coordinated by one azide ion and one water mol­ecule in trans positions, resulting in a distorted fac-MnN3O3 octa­hedral arrangement. The O atom of the uncoordinated water mol­ecule lies on a crystallographic twofold axis. In the crystal, O—H⋯O and O—H⋯N hydrogen bonds help to establish the packing

    The effect of fog on the probability density distribution of the ranging data of imaging laser radar

    Get PDF
    This paper outlines theoretically investigations of the probability density distribution (PDD) of ranging data for the imaging laser radar (ILR) system operating at a wavelength of 905 nm under the fog condition. Based on the physical model of the reflected laser pulses from a standard Lambertian target, a theoretical approximate model of PDD of the ranging data is developed under different fog concentrations, which offer improved precision target ranging and imaging. An experimental test bed for the ILR system is developed and its performance is evaluated using a dedicated indoor atmospheric chamber under homogeneously controlled fog conditions. We show that the measured results are in good agreement with both the accurate and approximate models within a given margin of error of less than 1%

    Exploring the Early Time Behavior of the Excited States of an Archetype Thermally Activated Delayed Fluorescence Molecule

    Get PDF
    Optical pump–probe techniques allow for an in-depth study of dark excited states. Here, we utilize them to map and gain insights into the excited states involved in the thermally activated delayed fluorescence (TADF) mechanism of a benchmark TADF emitter DMAC-TRZ. The results identify different electronic excited states involved in the key TADF transitions and their nature by combining pump–probe and photoluminescence measurements. The photoinduced absorption signals are highly dependent on polarity, affecting the transition oscillator strength but not their relative energy positions. In methylcyclohexane, a strong and vibronically structured local triplet excited state absorption (3LE → 3LE n ) is observed, which is quenched in higher polarity solvents as 3CT becomes the lowest triplet state. Furthermore, ultrafast transient absorption (fsTA) confirms the presence of two stable conformers of DMAC-TRZ: (1) quasi-axial (QA) interconverting within 20 ps into (2) quasi-equatorial (QE) in the excited state. Moreover, fsTA highlights how sensitive excited state couplings are to the environment and the molecular conformation

    IPC02-27155 DEVELOPMENT OF LARGE DIAMETER X70 HIGH TOUGHNESS HSAW LINEPIPE FOR GAS TRANSMMISION

    Get PDF
    ABSTRACT X70 large diameter linepipe with helical seam SAW were developed, with1016mm OD and 14.6mm WT. Acicular ferrite type linepipe steel is adopted for the base material, which was found having high toughness and low yield strength loss after pipe forming. The very stringent requirements for toughness, i.e. 190J/140J for average/minimum for pipe body and 120J/90J for average/minimum for weld and HAZ were meet successfully. The yield strength loss due to Bauschinger effect was found lower than 20 MPa, which benefited
    corecore