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Thomas Roger,1 Mohammed F. Saleh,2 Samudra Roy,2 Fabio Biancalana,1,2 Chunyong Li,1 and Daniele Faccio1

1School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom
2Max Planck Institute for the Science of Light, Günther-Scharowsky strasse 1, 91058 Erlangen, Germany

(Received 6 May 2013; published 5 November 2013)

We present a simple yet effective theory that predicts the existence of resonant radiation bands in the deep
normal group-velocity dispersion region of a medium, even in the absence of a zero-group-velocity dispersion
point. This radiation is evident when the medium is pumped with high-energy ultrashort pulses, and it is driven by
the interplay between the Kerr and the shock terms in the nonlinear Schrödinger equation. Accurate experiments
performed in bulk silica fully support the theoretical phase-matching condition found by our theory.
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In nonlinear optics, temporal solitons usually propagate in
a medium with additional perturbations (such as the Raman
effect, higher-order dispersions, external potentials, etc.) and,
when the momentum of the soliton matches the propagation
constant of the waveguide itself, may emit a kind of radiation
known as resonant radiation (RR) [1–3]. This phase matching
typically occurs only for specific frequencies, that can be
well separated from the central frequency of the soliton,
allowing a powerful energy transfer from the soliton to the
radiation.

There has been a recent surge of interest in the phenomenon
leading to the formation of resonant radiation in fibers and bulk
media. In recent experiments, ultraviolet resonant radiation
emitted by blueshifting solitons in hollow-core photonic
crystal fibers has been demonstrated [4]. Moreover, resonant
radiation has been demonstrated to be responsible, among
other mechanisms, for supercontinuum generation in optical
fibers and, in particular, in photonic crystal fibers [1–3,5].
Resonant radiation can also be observed in micron-size
integrated waveguides [6], in silicon-on-insulator waveguides
[7], and even in waveguide arrays where it is emitted by spatial
solitons [8]. In hydrodynamics, shallow water solitons can also
emit linear waves [9]. This universality has also led to fresh
interpretations in the basic processes leading to the formation
and control of resonant radiation in optics [10,11].

In previous papers on the subject, it was argued that, in
order to generate dispersive resonant radiation, one does not
strictly need a soliton since the radiation can be emitted
even when pumping in the normal dispersion regime in the
presence of a zero-group-velocity dispersion (GVD) point
that is sufficiently close to the pump wavelength [12,13]. The
phase-matching condition between the pulse and the radiation
is essentially identical to the soliton case [13]. All these papers
assume the impossibility of creating dispersive waves in the
absence of higher-order dispersion (HOD) terms since these
traditionally are the sources of the perturbation needed to
excite the radiation modes [1–3].

In this Rapid Communication, we show that, when oper-
ating in the normal dispersion regime of a medium, it is not
necessary to have higher-order dispersion or a zero-GVD point
to produce a powerful source of resonant radiation that is well
separated from the pump. We have found, rather surprisingly,
that only the Kerr effect is needed and that the phase-
matching condition is influenced strongly by a previously
overlooked effect, namely, shock-front-induced dispersion.

We derive a resonant radiation phase-matching condition,
and we support our theory with numerical simulations.
Moreover, we demonstrate experimentally the existence of the
new shock-front-induced resonant radiation by using pulses
propagating in normal GVD in bulk silica.

Phase-matching condition for resonant radiation in normal
GVD. Propagation of intense ultrashort pulses in a nonlinear
medium is described by the following generalized nonlinear
Schrödinger equation:

i ∂zA + D̂(i∂t )A + [1 + Ŝ(i∂t )]γ |A|2A = 0, (1)

where z and t are the longitudinal spatial and temporal
coordinates, respectively, A(z,t) is the electric-field enve-
lope, D̂(i∂t ) ≡ ∑∞

m=2 βm(i∂t )2/m! is the dispersion operator,
Ŝ(i∂t ) ≡ (i/ω0)∂t is the shock operator, βm is the mth-order
dispersion coefficient, γ is the nonlinear coefficient of the
medium, and ω0 is the central input pulse frequency.

Resonant radiation will be emitted at frequencies for which
the propagation constant of the medium matches the input
pulse momentum, whether the pulse is a soliton or not. This
condition can easily be found by equating the total phase of
the pump (φ0) and the total phase of the radiation (φR) after a
common delay t ≡ z/vg(ω0) with vg ≡ β1(ω0)−1, where β(ω)
is the propagation constant of the medium,

φ0 =
{
β(ω0) − ω0/vg(ω0) + γP

[
1 + ω − ω0

ω0

]}
z, (2)

φR = {β(ωR) − ωR/vg(ω0)}z. (3)

The third term inside the curly brackets in Eq. (2) is due
to the combined action of the self-phase modulation (SPM) and
the shock operator. The latter is traditionally neglected in the
literature since it is supposed to modify the resonant condition
only slightly, but in this Rapid Communication, we show that
it plays a crucial role in the absence of a zero-GVD point in the
vicinity of the pump frequency ω0. We note that RR is typically
emitted with a very different group velocity with respect to the
pump pulse so that no cross-phase modulation effects occur:
They are, therefore, neglected in (3). The phase-matching
condition for the radiation emission, namely, φ0 = φR, results
in the following equation for the frequency detuning �ω ≡
ωR − ω0 between pulse and radiation, obtained by expanding,
in Taylor series, the propagation constant of the radiation
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around ω0:
∞∑

m=2

1

m!
βm�ωm = γP

[
1 + �ω

ω0

]
. (4)

If only the second-order dispersion coefficient (β2) is taken
into account on the left-hand side of Eq. (4), one obtains the
following two resonant radiation frequencies in physical units:

�ω± =
γP ±

√
(γP )2 + 2β2γPω2

0

ω0β2
. (5)

The first solution �ω+ is always positive, and thus, the
resonant radiation associated with this solution is always
blueshifted with respect to the pump frequency. The second
solution �ω− is always negative and close to zero so that
the radiation associated with it is always redshifted and very
close to the pump frequency and, for this reason, may be
rather difficult to observe experimentally. An important and
surprising point is that it is not necessary to have a zero-GVD
point in the dispersion in order for pulses to emit resonant
radiation. The Kerr effect alone, when combined with the
pulse propagating in the normal GVD regime of the medium,
is sufficient to produce such radiation, which will appear as
two identical peaks, spectrally symmetric with respect to the
pump. Note that SPM, when combined with the normal GVD,
induces the formation of lateral peaks known as “optical-wave
breaking” [14], which were noted both experimentally and
numerically, and are attributed to four-wave mixing [14,15].
However, the radiation described in this Rapid Communication
is of a different nature and has been overlooked in previous
studies and recent papers on the subject [12,13] and should
be distinguished from optical-wave breaking since it leads to
asymmetric relatively far-detuned spectral peaks. However,
we note that, recently, self-steepening effects have been
considered with respect to the phase-matching condition for
spatiotemporal modulational instability gain [16], although not
in terms of solitonic propagation.

We first note that, if the shock term and HOD are neglected,
then Eq. (5) leads to

�ω± � ±
√

2γP/β2. (6)

In view of the existing literature on resonant radiation from
solitons, this result is interesting and is totally unexpected: One
does not need HOD or a zero-GVD frequency point in order to
observe resonant radiation, but just β2 and Kerr are necessary
in the normal GVD for sufficiently high laser-pulse powers.
The remaining terms in Eq. (5) indicate that the presence of the
shock term and HOD terms can then strongly unbalance the
spectral location of the two resonant radiation peaks, which
will shift to one side of the spectrum, making one of them
(typically the blueshifted one) very visible both numerically
and experimentally while hiding the other inside the central
spectral body of the input pulse.

Numerical simulations. We now prove the validity of the
phase-matching condition Eq. (4) by means of numerical
simulations. First of all, we write Eq. (4) in dimensionless
units by using the rescaled dimensionless variables ξ ≡
z/z0, τ ≡ t/t0, ψ ≡ A/

√
P0, z0 ≡ t2

0 /|β2|, P0 ≡ (γ z0)−1,

μsh ≡ (ω0t0)−1, αm ≡ βm/[|β2|m!tm−2
0 ] (m � 3), and
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FIG. 1. (Color online) (a) Propagation of an input pulse ψin =
N sech(τ ) in the normal dispersion with N = 15, α3 = μsh = 0 for
one dispersion length ξ = 1. (b) Same as (a) but with μsh = 0.05.
(c) Same as (a) but with τ = 0.05 and α3 = 0.005. (d) Contour plot
of the pulse propagation in the time domain with the same parameters
as in (c). Note that the formation of a shock at ξ ∼ 0.02 coincides
with the moment of the formation of the two spectral sidebands in
(c). The dashed white lines denote the position of the RR calculated
by using the phase-matching condition Eq. (7). (a)–(d) are plotted in
logarithmic scale over 2.5 decades. The white arrow in (d) indicates
the point of shock formation.

δ ≡ �ω t0. The positions of the resonant radiation frequencies
Eqs. (5) and (6) in dimensionless units then become

∑
m�2

αmδm = N2[1 + μshδ], (7)

δ± � ±
√

2N, (8)

δ± = N2μsh ±
√

(N2μsh)2 + 2N2. (9)

With the above scalings, we then solve Eq. (1) in its
dimensionless form by means of a standard split-step Fourier
scheme in which the nonlinear part is integrated by means
of a fourth-order Runge-Kutta algorithm. We use an input
pulse ψin = N sech(τ ). The results are shown in the panel of
Fig. 1. In Fig. 1(a), we show the spectral evolution of a strong
pulse of dimensionless amplitude N = 15, propagated for
ξ = 1 (i.e., one second-order dispersion length) in the normal
dispersion regime with no higher-order dispersive terms and
when neglecting the shock operator, i.e., μsh = 0. After the
usual SPM phase, which broadens the spectrum symmetrically,
one can notice around ξ ∼ 0.02, two sidebands that correspond
exactly to the resonant radiation bands described by Eq. (8)
(shown by white dashed lines). In this case, only the normal
GVD and the Kerr nonlinearity are present, and the two
sidebands are perfectly symmetric with respect to δ = 0, i.e.,
the input pulse frequency. This case is conceptually important
but unrealistic since the shock term can never be switched off
in practice and constant GVD is very difficult if not impossible
to achieve in ordinary waveguides or in bulk media.
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In Fig. 1(b), we still do not introduce any higher-order dis-
persion term, but we introduce a shock term coefficient μsh =
0.05. Such a value of μsh would correspond, in dimensional
units, to a pulse duration of t0 � 8.5 fs if the pump wavelength
is λ0 � 0.8 μm. All other parameters are the same as in
Fig. 1(a). One can see that introducing the shock term strongly
modifies the position of the sidebands, the positions of which
become strongly unbalanced with respect to δ = 0. This is also
accurately predicted by Eq. (9), represented with white dashed
lines in the figure. As discussed above, one of the sidebands
shifts its position very close to the input pulse frequency, and is
“hidden” inside the spectral body of the self-modulated pulse.
The second blueshifted sideband is much more evident and
possesses a much broader bandwidth than the redshifted band.

Figure 1(c) is the same as Fig. 1(b) but with an additional
third-order dispersion term α3 = 0.005 included. It is evident
that third-order dispersion does not dramatically affect the
position of the sidebands from the previous cases. More com-
plicated cases, when both the full dispersion and the shock term
are included, can easily be studied by solving the generally
large polynomial equation Eq. (7). In Fig. 1(d), we show the
space-time contour plot of the propagation relative to Fig. 1(c).
One can see that the moment when the sidebands start to be
emitted spectrally is exactly when a shock appears in the time
domain, indicated with an arrow in Fig. 1(d).

Experiments in bulk fused silica glass. A remarkable feature
of RR is that it can also be accurately described within the
framework of a first Born approximation, i.e., it is essentially a
linear-wave scattering process from a time-dependent (moving
at speed v) scatterer [17]. Moreover, this has been shown to
be true not only in one-dimensional (1D), but also in two-
dimensional [18] and three-dimensional (3D) bulk interaction
geometries [19,20]. In the full 3D geometry, the standard
momentum relation for RR in the 1D case becomes a relation
for the (propagation direction) z component of the 3D wave
vector, which, accounting for the shock term introduced in
Eq. (5), reads as

kz(ω) = k(ω0) + (ω − ω0)

v
− γP

�ω

ω0
. (10)

The full (θ,λ) location of the 3D RR peak is then given
by θ ∼ k⊥/k =

√
1 − (kz/k)2, where k = ωn(ω)/c. Exper-

iments may, therefore, be either carried out in 1D fiber
geometries or, more conveniently from the perspective of
attaining high pulse intensities, in a 3D bulk geometry.
Following this idea, we carried out experiments in bulk
fused silica glass. We used an input Bessel pulse in order
to achieve the essential conditions required for observing
shock-front-induced RR: (i) The nondiffracting Bessel peak
gives an effective fiberlike propagation regime with sustained
peak intensities over long distances, (ii) the spatial Bessel
dynamics lead to an effective suppression of transverse spatial
instabilities, in particular, self-focusing and filamentation that
typically dominate Gaussian pulse propagation [21], (iii) high
intensities (multi-TW/cm2) are attained due to the suppression
of filamentation effects, i.e., suppression of the clamping of
the peak intensity to a maximum value that typically occurs
with Gaussian pulses [21].

In our experiments, ultrashort optical pulses (t0 ∼ 100 fs,
central wavelength 785 nm) are shaped into Bessel beams
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FIG. 2. (Color online) Evolution of spectral broadening from a
Bessel beam in bulk fused silica as the intensity of the beam is
increased. The lower x axis shows the average energy of the pulses,
whereas, the upper x axis estimates the peak intensity of the Bessel
beam at the position of the fused silica block. The spectra were
measured after a filter that has a sharp long-wavelength cutoff for
λ > 700 nm. The input pump pulse spectrum, therefore, only appears
as a very weak feature at 785 nm. The dashed line shows the fit of
Eq. (11), which fits well over the range of energies used in this study.

using an axicon of base angle θ = 3◦ that creates an intense
on-axis central peak (Imax = 8 TW/cm2). This intense peak
is normally incident onto a ∼1.5-cm-thick piece of fused
silica.

In Fig. 2, we show the output spectra measured with a
fiber spectrometer (Ocean Optics HD4000), integrated over
the width of the beam. A filter that cuts all wavelengths
above 700–750 nm is included in order to avoid saturation
and damage from the pump beam. The input pump energy
is increased ranging from 15 to 27 μJ corresponding, for the
Bessel angle and wavelength used here, to intensities ranging
from 3.5 to 6.5 TW/cm2 (indicated in the figure). At low input
energies (15–18 μJ), there is spectral broadening generated
by SPM from the input pulse. For higher input energies, we
observe the formation of a separated peak at a wavelength
that blueshifts with increasing pump energy. At higher input
energies (>26 μJ), filamentation dynamics finally take over,
and supercontinuum generation washes out the separated
peak around 400 nm. We interpret the isolated blue spectral
peak (for energies <26 μJ) as evidence for shock-induced
resonant radiation. Indeed, we fit this peak using Eq. (5) after
a Taylor expansion to second order, this providing an equation
for the wavelength of the RR,

λRR = λ0

1 + x + √
x(2 + x)

where

x = n2Ik0λ
2
0

2π2c2|β2| . (11)

Here n2 = 3 × 10−16 cm2/W [22] is the nonlinear refractive
index of the fused silica, and the second-order dispersion coef-
ficient is β2 = 3.7 × 10−26 s2/m [15], whereas, the peak inten-
sity is calculated using the standard equation for linear Bessel
beam propagation [see Supplemental Material [23], Eq. (1)].
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FIG. 3. (Color online) Measured spectrum at a pump intensity of
∼21 μJ following the formation of the shock front, which induces
the RR described by Eq. (5). Dashed white line: fit from Eq. (10).
Solid white circle: 1D solution from Eq. (5).

This approximation is valid for all input energies below the fil-
amentation threshold (Ein � 25 μJ), i.e., below the threshold
for which nonlinear beam reshaping dynamics take over and
completely dominate the pulse evolution. We underline that,
when fitting with this equation, there are no free parameters,
yet as shown by the dashed black line in Fig. 2, we obtain
an excellent fit to the experimental data. In the Supplemental
Material [23], we compare measurements for the Bessel pulse
(shown in Fig. 2) with an input Gaussian pulse. The Gaussian
pulse shows evident filamentation dynamics and supercontin-
uum generation for input peak intensities that are more than
one order of magnitude lower than the observed Bessel beam
filamentation threshold. Therefore, with a Gaussian beam, the
shock-induced RR is either simply not excited (due to the lower
peak intensities) or may still be present but, in any case, is cov-
ered by the filament supercontinuum and is not distinguishable
as a separate peak. Conversely, with Bessel beam filamenta-
tion, supercontinuum occurs only at much higher intensities.
We note that our experiments in bulk media allow us to measure
the full space-time spectra in (θ,λ) coordinates [20,24,25].

In Fig. 3, we show the far-field (θ,λ) spectrum for a
pump energy of ∼21 μJ. This spectrum is measured using

a homebuilt imaging spectrometer and a modified digital
camera. The latter allows measurement of spectra without the
need for any additional filters to cut the pump beam, thus,
the whole frequency spectrum is now clearly visible. Figure 3
shows a clear blueshifted peak close to 400 nm that is separated
from the rest of the spectrum and whose position and shape
are well reproduced by Eq. (10) (dashed white line) where
the peak intensity is taken as the intensity at the sample input
facet (see Supplemental Material [23]). The full white circle in
the figure shows the calculated wavelength for shock-induced
resonant radiation as predicted by the �ω+ solution to the
1D relation Eq. (5). This solution naturally coincides with
the full 3D fit for θ = 0◦. The full far-field evolution (for
increasing input energy) of the spectral broadening is shown
in the Supplemental Material [23].

Conclusions. We have demonstrated, theoretically and
experimentally, a form of resonant radiation that is solely
is the result of the high laser pulse intensity and is highly
visible in the presence of a shock front in the form of a
blueshifted spectral peak. This form of wave breaking finds a
quantitative description in terms of a generalized linear-wave
resonant scattering process that occurs in normal GVD and
even in the absence of a zero-GVD point. The ubiquity of
similar shock-front dynamics in other systems, e.g., gravity
waves in water or in plasma waves, points to similar wave
scattering processes that should also appear in the same form
as described here. The ability to control such radiation can lead
to novel ways to implement and to control the generation of
supercontinua which are modulationally stable and with higher
coherence. Likewise, at the quantum level, recently discovered
vacuum squeezing associated with RR [26] may benefit
from generation when starting from a stable background
state.
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