188 research outputs found

    Efficient Quantum Algorithms for Quantum Optimal Control

    Full text link
    In this paper, we present efficient quantum algorithms that are exponentially faster than classical algorithms for solving the quantum optimal control problem. This problem involves finding the control variable that maximizes a physical quantity at time TT, where the system is governed by a time-dependent Schr\"odinger equation. This type of control problem also has an intricate relation with machine learning. Our algorithms are based on a time-dependent Hamiltonian simulation method and a fast gradient-estimation algorithm. We also provide a comprehensive error analysis to quantify the total error from various steps, such as the finite-dimensional representation of the control function, the discretization of the Schr\"odinger equation, the numerical quadrature, and optimization. Our quantum algorithms require fault-tolerant quantum computers.Comment: 17 pages, 2 figure

    Simulating Markovian open quantum systems using higher-order series expansion

    Full text link
    We present an efficient quantum algorithm for simulating the dynamics of Markovian open quantum systems. The performance of our algorithm is similar to the previous state-of-the-art quantum algorithm, i.e., it scales linearly in evolution time and poly-logarithmically in inverse precision. However, our algorithm is conceptually cleaner, and it only uses simple quantum primitives without compressed encoding. Our approach is based on a novel mathematical treatment of the evolution map, which involves a higher-order series expansion based on Duhamel's principle and approximating multiple integrals using scaled Gaussian quadrature. Our method easily generalizes to simulating quantum dynamics with time-dependent Lindbladians. Furthermore, our method of approximating multiple integrals using scaled Gaussian quadrature could potentially be used to produce a more efficient approximation of time-ordered integrals, and therefore can simplify existing quantum algorithms for simulating time-dependent Hamiltonians based on a truncated Dyson series.Comment: 28 pages, various minor changes. To appear in the 50th EATCS International Colloquium on Automata, Languages and Programming (ICALP 2023

    Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion

    Get PDF

    Implementation of the Density-functional Theory on Quantum Computers with Linear Scaling with respect to the Number of Atoms

    Full text link
    Density-functional theory (DFT) has revolutionized computer simulations in chemistry and material science. A faithful implementation of the theory requires self-consistent calculations. However, this effort involves repeatedly diagonalizing the Hamiltonian, for which a classical algorithm typically requires a computational complexity that scales cubically with respect to the number of electrons. This limits DFT's applicability to large-scale problems with complex chemical environments and microstructures. This article presents a quantum algorithm that has a linear scaling with respect to the number of atoms, which is much smaller than the number of electrons. Our algorithm leverages the quantum singular value transformation (QSVT) to generate a quantum circuit to encode the density-matrix, and an estimation method for computing the output electron density. In addition, we present a randomized block coordinate fixed-point method to accelerate the self-consistent field calculations by reducing the number of components of the electron density that needs to be estimated. The proposed framework is accompanied by a rigorous error analysis that quantifies the function approximation error, the statistical fluctuation, and the iteration complexity. In particular, the analysis of our self-consistent iterations takes into account the measurement noise from the quantum circuit. These advancements offer a promising avenue for tackling large-scale DFT problems, enabling simulations of complex systems that were previously computationally infeasible

    Sublinear classical and quantum algorithms for general matrix games

    Full text link
    We investigate sublinear classical and quantum algorithms for matrix games, a fundamental problem in optimization and machine learning, with provable guarantees. Given a matrix ARn×dA\in\mathbb{R}^{n\times d}, sublinear algorithms for the matrix game minxXmaxyYyAx\min_{x\in\mathcal{X}}\max_{y\in\mathcal{Y}} y^{\top} Ax were previously known only for two special cases: (1) Y\mathcal{Y} being the 1\ell_{1}-norm unit ball, and (2) X\mathcal{X} being either the 1\ell_{1}- or the 2\ell_{2}-norm unit ball. We give a sublinear classical algorithm that can interpolate smoothly between these two cases: for any fixed q(1,2]q\in (1,2], we solve the matrix game where X\mathcal{X} is a q\ell_{q}-norm unit ball within additive error ϵ\epsilon in time O~((n+d)/ϵ2)\tilde{O}((n+d)/{\epsilon^{2}}). We also provide a corresponding sublinear quantum algorithm that solves the same task in time O~((n+d)poly(1/ϵ))\tilde{O}((\sqrt{n}+\sqrt{d})\textrm{poly}(1/\epsilon)) with a quadratic improvement in both nn and dd. Both our classical and quantum algorithms are optimal in the dimension parameters nn and dd up to poly-logarithmic factors. Finally, we propose sublinear classical and quantum algorithms for the approximate Carath\'eodory problem and the q\ell_{q}-margin support vector machines as applications.Comment: 16 pages, 2 figures. To appear in the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2021

    Quantum-Inspired Sublinear Algorithm for Solving Low-Rank Semidefinite Programming

    Get PDF
    Semidefinite programming (SDP) is a central topic in mathematical optimization with extensive studies on its efficient solvers. In this paper, we present a proof-of-principle sublinear-time algorithm for solving SDPs with low-rank constraints; specifically, given an SDP with mm constraint matrices, each of dimension nn and rank rr, our algorithm can compute any entry and efficient descriptions of the spectral decomposition of the solution matrix. The algorithm runs in time O(mpoly(logn,r,1/ε))O(m\cdot\mathrm{poly}(\log n,r,1/\varepsilon)) given access to a sampling-based low-overhead data structure for the constraint matrices, where ε\varepsilon is the precision of the solution. In addition, we apply our algorithm to a quantum state learning task as an application. Technically, our approach aligns with 1) SDP solvers based on the matrix multiplicative weight (MMW) framework by Arora and Kale [TOC '12]; 2) sampling-based dequantizing framework pioneered by Tang [STOC '19]. In order to compute the matrix exponential required in the MMW framework, we introduce two new techniques that may be of independent interest: \bullet Weighted sampling: assuming sampling access to each individual constraint matrix A1,,AτA_{1},\ldots,A_{\tau}, we propose a procedure that gives a good approximation of A=A1++AτA=A_{1}+\cdots+A_{\tau}. \bullet Symmetric approximation: we propose a sampling procedure that gives the \emph{spectral decomposition} of a low-rank Hermitian matrix AA. To the best of our knowledge, this is the first sampling-based algorithm for spectral decomposition, as previous works only give singular values and vectors.Comment: 37 pages, 1 figure. To appear in the Proceedings of the 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020

    Well-tempered cosmology

    Get PDF
    We examine an approach to cosmology, known as Well-Tempering, that allows for a de Sitter phase whose expansion is independent of the cosmological constant. Starting from a generic scalar-tensor theory compatible with the recent gravitational wave observation, we impose the Well-Tempering conditions and derive a system that is capable of tuning away the cosmological constant within a sub-class of Horndeski theory, where the scalar has a canonical kinetic term and a general potential. This scenario improves upon the Fab-Four approach by allowing a standard fluid-cosmology before entering the de Sitter phase, and we present an explicit example of our general solution

    Viia-hand: a Reach-and-grasp Restoration System Integrating Voice interaction, Computer vision and Auditory feedback for Blind Amputees

    Full text link
    Visual feedback plays a crucial role in the process of amputation patients completing grasping in the field of prosthesis control. However, for blind and visually impaired (BVI) amputees, the loss of both visual and grasping abilities makes the "easy" reach-and-grasp task a feasible challenge. In this paper, we propose a novel multi-sensory prosthesis system helping BVI amputees with sensing, navigation and grasp operations. It combines modules of voice interaction, environmental perception, grasp guidance, collaborative control, and auditory/tactile feedback. In particular, the voice interaction module receives user instructions and invokes other functional modules according to the instructions. The environmental perception and grasp guidance module obtains environmental information through computer vision, and feedbacks the information to the user through auditory feedback modules (voice prompts and spatial sound sources) and tactile feedback modules (vibration stimulation). The prosthesis collaborative control module obtains the context information of the grasp guidance process and completes the collaborative control of grasp gestures and wrist angles of prosthesis in conjunction with the user's control intention in order to achieve stable grasp of various objects. This paper details a prototyping design (named viia-hand) and presents its preliminary experimental verification on healthy subjects completing specific reach-and-grasp tasks. Our results showed that, with the help of our new design, the subjects were able to achieve a precise reach and reliable grasp of the target objects in a relatively cluttered environment. Additionally, the system is extremely user-friendly, as users can quickly adapt to it with minimal training
    corecore