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Abstract
Semidefinite programming (SDP) is a central topic in mathematical optimization with extensive
studies on its efficient solvers. In this paper, we present a proof-of-principle sublinear-time algorithm
for solving SDPs with low-rank constraints; specifically, given an SDP with m constraint matrices,
each of dimension n and rank r, our algorithm can compute any entry and efficient descriptions of the
spectral decomposition of the solution matrix. The algorithm runs in time O(m · poly(logn, r, 1/ε))
given access to a sampling-based low-overhead data structure for the constraint matrices, where ε is
the precision of the solution. In addition, we apply our algorithm to a quantum state learning task
as an application.

Technically, our approach aligns with 1) SDP solvers based on the matrix multiplicative weight
(MMW) framework by Arora and Kale [TOC ’12]; 2) sampling-based dequantizing framework
pioneered by Tang [STOC ’19]. In order to compute the matrix exponential required in the MMW
framework, we introduce two new techniques that may be of independent interest:

Weighted sampling: assuming sampling access to each individual constraint matrix A1, . . . , Aτ ,
we propose a procedure that gives a good approximation of A = A1 + · · ·+Aτ .
Symmetric approximation: we propose a sampling procedure that gives the spectral decomposition
of a low-rank Hermitian matrix A. To the best of our knowledge, this is the first sampling-based
algorithm for spectral decomposition, as previous works only give singular values and vectors.
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1 Introduction

Semidefinite programming (SDP) is a central topic in the studies of mathematical optimization
and theoretical computer science, with a wide range of applications including algorithm
design, machine learning, operations research, etc. The importance of SDP comes from both
its generality that contains the better-known linear programming (LP) and the fact that it
admits polynomial-time solvers. Mathematically, an SDP is defined as follows:

max Tr[CX] (1)
s.t. Tr[AiX] ≤ bi ∀ i ∈ [m]; (2)

X � 0, (3)

where m is the number of constraints, A1, . . . , Am, C are n × n Hermitian matrices, and
b1, . . . , bm ∈ R; Eq. (3) restricts the variable matrix X to be positive semidefinite (PSD),
i.e., X is an n× n Hermitian matrix with non-negative eigenvalues (more generally, X � Y
means that X − Y is a PSD matrix). An ε-approximate solution of this SDP is an X∗ that
satisfies Eqns. (2) and (3) while Tr[CX∗] ≥ OPT− ε (OPT being the optimum of the SDP).

There is rich literature on solving SDPs. Ellipsoid method gave the first polynomial-time
SDP solvers [29, 19], and the complexities of the SDP solvers had been subsequently improved
by the interior-point method [34] and the cutting-plane method [3, 33]; see also the survey
paper [38]. The current state-of-the-art SDP solver [31, 24] runs in time Õ(m(m2 + nω +
mn2)poly(log 1/ε)), where ω < 2.373 is the exponent of matrix multiplication.1 On the other
hand, if we tolerate polynomial dependence in 1/ε, Arora and Kale [7] gave an SDP solver
with better complexities in m and n: Õ(mn2(RpRd/ε)4 + n2(RpRd/ε)7), where Rp, Rd are
given upper bounds on the `1-norm of the optimal primal and dual solutions, respectively
(see more details in [5]). This is subsequently improved to Õ(m/ε2 + n2/ε2.5) by Garber and
Hazan [16, 17] when Rp, Rd = 1 and bi = 0 in Eq. (2) for all i ∈ [m]; as a complement, [16]
also established a lower bound Ω(m/ε2 + n2/ε2) under the same assumption.

The SDP solvers mentioned above all use the standard entry-wise access to matrices
A1, . . . , Am, and C. In contrast, a common methodology in algorithm design is to assume a
certain natural preprocessed data structure such that the problem can be solved in sublinear
time, perhaps even in poly-logarithmic time, given queries to the preprocessed data structure
(e.g., see the examples discussed in Section 1.3). Such methodology is extensively exploited
in quantum algorithms, where we are given a unitary oracle to access entries of matrices
in superposition, a fundamental feature in quantum mechanics and the essence of quantum
speedups. In particular, quantum SDP solvers in the case that matrices are sparse have
been studied in [10, 5, 9, 4] and culminate in a quantum algorithm that runs in time
Õ
(
(
√
m +

√
nRpRd/ε)n(RpRd/ε)4) [4], which achieve polynomial speedup comparing to

existing classical algorithms in m and n. Based on an oracle that can prepare the quantum
state corresponding to the positive semidefinite part of Hermitian matrices,2 quantum
exponential speedup in n has been achieved for matrices with rank r = poly(logn) by [9, 4],
whose algorithms run in time Õ(

√
m) · poly(logm, logn, r, 1/ε). Considering this, SDP was

previously believed to be a strong candidate for exponential quantum speedups in the low-rank
setting (see e.g. [35]).

1 Throughout the paper, Õ(f(·)) denotes O (f(·)polylog(f(·))).
2 Ref. [4] called this the quantum state input model. Their complexity is expressed in terms of a parameter
B, which is basically the trace norm of the constraint and cost matrices, which then is basically the
rank for matrices with spectral norm 1.
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Mutually inspired by both classical and quantum SDP solvers, and the series of “dequant-
ization” results [36, 12] lead by Tang’s breakthrough result [37], in this work we strive to
match the exponential speedup of [9, 4] with a classical algorithm, with the same low-rank
requirement on constraint and cost matrices.

1.1 Main results
We show that when the constraint and cost matrices are low-rank, with a low-overhead data
structure that supports the following sampling access, there exists a classical algorithm whose
runtime is logarithmic in the dimension n of the matrices.

I Definition 1 (Sampling and query access). Let M ∈ Cn×n. Denote ‖·‖ to be the `2 norm
and ‖·‖F to be the Frobenius norm. We say that we have the sampling access to M if we can
1. sample a row index i ∈ [n] of M where the probability of row i being chosen is

‖M(i, ·)‖2∥∥M∥∥2
F

;

2. for all i ∈ [n], sample an index j ∈ [n] where the probability of j being chosen is

|M(i, j)|2

‖M(i, ·)‖2 ;

3. query the entry M(i, j) for any i, j ∈ [n]; and
4. evaluate norms of ‖M‖F and ‖M(i, ·)‖ for i ∈ [n],
with time complexity O(poly(logn)) for each sampling and norm access.

A low-overhead data structure that allows for this sampling access is shown in Section 2.2.
Our main result is as follows.

I Theorem 2 (informal; see Theorems 6 and 12 and Algorithm 7). Let C,A1, . . . , Am ∈ Cn×n
be an SDP instance as in Eqns. (1) to (3). Suppose rank(C),maxi∈[n] rank(Ai) ≤ r. Given
sampling access to A1, . . . , Am, C in Definition 1, there is an algorithm that gives any specific
entry of an ε-approximate solution of the SDP with probability at least 2/3; the algorithm
runs in time O(m · poly(logn, r,RpRd/ε)), where Rp, Rd are given upper bounds on the
`1-norm of the optimal primal and dual solutions.

Comparing our results to existing classical randomized algorithms for solving SDP
(e.g., [7, 16, 17]), our algorithm outperforms existing classical SDP solvers given sampling
access to the constraint matrices (which can be realized with a low-overhead data structure).
Specifically, the running time of our algorithm is O(m · poly(logn, r,RpRd/ε)) according
to Theorem 2, which achieves exponential speedup in terms of n with the data structure
given in Theorem 5. It is worth noting that there are other ways to implement the sampling
and query access. For example, Drineas, Kannan, and Mahoney [14, Lemma 2] showed
that the sampling access in Definition 1 can be achieved with poly-logarithmic space if the
matrix elements are streamed. Therefore, Theorem 2 also implies that there exists a one-pass
poly-logarithmic space algorithm for low-rank SDP in the data-streaming model.

Compared to quantum algorithms, our algorithm has comparable running time. It is
because existing quantum SDP solvers that achieve exponential speed up in terms of n all
basically have polynomial dependence on the rank r [9, 4], so they also have poly(logn, r)
complexity. It is worth noting that the quantum SDP solvers require additional assumptions

MFCS 2020
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on the way the matrices are given. Furthermore, we give query access to the solution matrix
which was not achieved by existing quantum SDP solvers, as they only give sampling access
to the solution matrix. In this regard, it is easy to obtain the sampling access of the solution
matrix from our algorithm by extending the rejection sampling techniques of [37] as pointed
out by Tang3.

Our result aligns with the studies of sampling-based algorithms for solving linear algebraic
problems. In particular, [15] gave low-rank approximations of a matrix in poly-logarithmic
time with sampling access to the matrix as in Definition 1. Recently, Tang extended the idea
of [15] to give a poly-logarithmic time algorithm for solving recommendation systems [37].
Subsequently, still under the same sampling assumption, Tang [36] sketched poly-logarithmic
algorithms for principal component analysis and clustering assignments, and two follow-up
papers [18, 12] gave poly-logarithmic algorithms for solving low-rank linear systems. All
these sampling-based sublinear algorithms directly exploit the sampling approach in [15]
(see Section 1.2 for details); to solve SDPs, we derive an augmented sampling toolbox which
includes two novel techniques: weighted sampling and symmetric approximation.

As a corollary, our SDP solver can be applied to learning quantum states4 efficiently. A
particular task of learning quantum states is shadow tomography [1], where we are asked to
find a description of an unknown quantum state ρ such that we can approximate Tr[ρEi]
up to error ε for a specific collection of Hermitian matrices E1, . . . , Em where 0 � Ei � I

and Ei ∈ Cn×n for all i ∈ [m] (such Ei can also be viewed as a measurement operator in a
two-outcome POVM in quantum computing). Mathematically, shadow tomography can be
formulated as the following SDP feasibility problem:

Find σ such that |Tr[σEi]− Tr[ρEi]| ≤ ε ∀ i ∈ [m]; (4)
σ � 0, Tr[σ] = 1. (5)

Under a quantum model proposed by [9] where ρ,E1, . . . , Em are stored as quantum
states, the state-of-the-art quantum algorithm [4] solves shadow tomography with time
O
(
(
√
m+min{

√
n/ε, r2.5/ε3.5})r/ε4

)
where r = maxi∈[m] rank(Ei); in other words, quantum

algorithms achieve poly-logarithmic complexity in n for low-rank shadow tomography. We
observe the same phenomenon under our sampling-based model:

I Corollary 3 (informal; see Corollary 15). Given sampling access of matrices E1, . . . , Em ∈
Cn×n as in Definition 1 and real numbers Tr[ρE1], . . . ,Tr[ρEm], there is an algorithm that
gives a succinct description as in Remark 13 and any entry of an ε-approximate solution σ
of the shadow tomography problem defined as Eqns. (4) and (5) with probability at least 2/3;
the algorithm runs in time O(m · poly(logn, r, 1/ε)).

1.2 Techniques

Matrix multiplicative weight method (MMW). We study a normalized SDP feasibility
testing problem defined as follows:

3 Personal communication.
4 A quantum state ρ is a PSD matrix with trace one.
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I Definition 4 (Feasibility of SDP). Given an ε > 0, m real numbers a1, . . . , am ∈ R, and
Hermitian n× n matrices A1, . . . , Am where −I � Ai � I, ∀j ∈ [m], define Sε as the set of
all X such that

Tr[AiX] ≤ ai + ε ∀ i ∈ [m]; (6)
X � 0; (7)

Tr[X] = 1. (8)

For ε-approximate feasibility testing of the SDP, we require that:
If Sε = ∅, output “infeasible”;
If S0 6= ∅, output an X ∈ Sε.5

It is well-known that one can use binary search to reduce ε-approximation of the SDP in
Eqns. (1) to (3) to O(log(RpRd/ε)) calls of the feasibility problem in Definition 4 with
ε = ε/(RpRd).6 Therefore, in this paper we focus on solving feasibility testing of SDPs.

To solve the feasibility testing problem in Definition 4, we follow the matrix multiplicative
weight (MMW) framework [6]. To be more specific, we follow the approach of regarding
MMW as a zero-sum game with two players (see, e.g., [21, 39, 20, 30, 9]), where the first
player wants to provide a feasible X ∈ Sε, and the second player wants to find any violation
j ∈ [m] of any proposed X, i.e., Tr[AjX] > aj + ε. At the tth round of the game, if the
second player points out a violation jt for the current proposed solution Xt, the first player
proposes a new solution

Xt+1 ← exp[−(Aj1 + · · ·+Ajt)] (9)

(up to normalization); such a solution by matrix exponentiation is formally named as a Gibbs
state. A feasible solution is actually an equilibrium point of the zero-sum game, which can
also be approximated by the MMW method [6]; formal discussions are given in Section 2.3.

Improved sampling tools. Before describing our improved sampling tools, let us give a brief
review of the techniques introduced by [15]. The basic idea of [15] comes from the fact that
a low-rank matrix A can be well-approximated by sampling a small number of rows. More
precisely, suppose that A is an n× n matrix with rank r, where n� r. Because n is large,
it is preferable to obtain a “description” of A without using poly(n) resources. If we have
the sampling access to A in the form of Definition 1, we can sample rows from A according
to statement 1 of Definition 1. Suppose S is the p× n submatrix of A formed by sampling
p = poly(r) rows from A with some normalization. It can be shown that S†S ≈ A†A in the
Frobenius norm. Furthermore, we can apply the similar sampling techniques to sampling p
columns of S with some normalization to form a p × p matrix W such that WW † ≈ SS†.
Then the singular values and singular vectors of W , which are easy to compute because p is
small, together with the row indices that form S, can be viewed as a succinct description
of some matrix V ∈ Cn×r satisfying A ≈ AV V †, which gives a low-rank projection of A.
In [12], this method was extended to approximating the spectral decomposition of AA†, i.e.,
calculating a small diagonal matrix D and finding a succinct description of V such that
V D2V † ≈ AA†.

5 If Sε 6= ∅ and S0 = ∅, either output is acceptable.
6 For the normalized case RpRd = 1, we first guess a candidate value c1 = 0 for the objective function,
and add that as a constraint Tr[CX] ≥ c1 to the optimization problem. If this problem is feasible,
the optimum is larger than c1 and we accordingly take c2 = c1 + 1

2 ; if this problem is infeasible, the
optimum is smaller than c1 and we accordingly take c2 = c1 − 1

2 ; we proceed similarly for all ci. As a
result, we could solve the optimization problem with precision ε using dlog2

1
ε e calls to the feasibility

problem in Definition 4. For renormalization, it suffices to take ε = ε/(RpRd). See also [9].

MFCS 2020
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To implement the MMW framework, we need an approximate description of the matrix
exponentiation Xt+1 := exp[−

∑t
τ=1 Ajτ ] in Eq. (9). We achieve this in two steps. First,

we get an approximate description of the spectral decomposition of A :=
∑t
τ=1 Ajτ as

A ≈ V̂ D̂V̂ †, where V̂ is an n× r matrix and D̂ is an r × r real diagonal matrix. Then, we
approximate the matrix exponentiation e−A by V̂ e−DV̂ †.

There are two main technical difficulties that we overcome with new tools while following
the above strategy. First, since A changes dynamically throughout the MMW method, we
cannot assume the sampling access to A; a more reasonable assumption is to have sampling
access to each individual constraint matrix Ajτ , but it is hard to directly sample from A by
sampling from each individual Ajτ .7 In Section 3.1, we sidestep this difficulty by devising the
weighted sampling procedure which gives a succinct description of a low-rank approximation
of A =

∑
τ Ajτ by sampling each individual Ajτ . In other words, we cannot sample according

to A, but we can still find a succinct description of a low-rank approximation of A.
Second, the original sampling procedure of [15] and the extension by [12] give V D2V † ≈

A†A instead of a spectral decomposition V̂ D̂V̂ † ≈ A, even if A is Hermitian. For our purpose
of matrix exponentiation, singular value decomposition is problematic because the singular
values ignore the signs of the eigenvalues; specifically, we get a large error if we approximate
e−A by naively exponentiating the singular value decomposition: e−A 6≈ V e−DV †. Note that
this issue of missing negative signs is intrinsic to the tools in [15] because they are built upon
the approximation S†S ≈ A†A; Suppose that A has the decomposition A = UDV †, where
D is a diagonal matrix, and U and V are isometries. Then A†A = V D†DV †, cancelling
out any phase on D. We resolve this issue by a novel approximation procedure, symmetric
approximation. Symmetric approximation is based on the result A ≈ AV V † shown by [15]. It
then holds that A ≈ V (V †AV )V † because the symmetry of A implies that V V † acts roughly
as the identity on the image of A. Since (V †AV ) is a small matrix of size r × r, we can
calculate it explicitly and diagonalize it, getting approximate eigenvalues of A. Together
with the description of V , we get the desired description of the spectral decomposition of A.
See Section 3.2 for more details.

1.3 Related work
As we have mentioned earlier, many SDP solvers use cutting-plane methods or interior-point
methods with complexity poly(log(1/ε)) but larger complexities in m and n. In contrast,
our SDP solver follows the MMW framework, and we briefly summarize such SDP solvers in
existing literature. They mainly fall into two categories as follows.

First, MMW is adopted in solvers for positive SDPs, i.e., A1, . . . , Am, C � 0. In this case,
the power of MMW lies in its efficiency of having only Õ(poly(1/ε)) iterations (i.e., poly-
logarithmic in m,n) and the fact that it admits width-independent solvers whose complexities
are independent of Rp and Rd. Ref. [32] first gave a width-independent positive LP solver
that runs in O(log2(mn)/ε4) iterations, and [22] subsequently generalized this result to give
the first width-independent positive SDP solver.The state-of-the-art positive SDP solver was
proposed by [2] with only O(log2(mn)/ε3) iterations.

Second, as far as we know, the vast majority of quantum SDP solvers use the MMW
framework. The first quantum SDP solver was proposed by [10] with worst-case running time
Õ(
√
mns2(RpRd/ε)32), where s is the sparsity of input matrices, i.e., every row or column

7 For example, assume we have A = A1 +A2 such that A2 = −A1 + ε, where ε is a matrix with small
entries. In this case, A1 and A2 mostly cancel out each other and leave A = ε. Since ε can be arbitrarily
small compared to A1 and A2, it is hard to sample from ε by sampling from A1 and A2.
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of A1, . . . , Am, C has at most s nonzero elements. Subsequently, the quantum complexity of
solving SDPs was improved by [5, 9], and the state-of-the-art quantum SDP solver runs in
time Õ

(
(
√
m+

√
nRpRd/ε)s(RpRd/ε)4) [4]. This is optimal in the dependence of m and n

because [10] proved a quantum lower bound of Ω(
√
m+

√
n) for constant Rp, Rd, s, and ε.

The authors, along with Gilyén and Tang [11], further generalized the techniques to
singular value transformation8 and proposed a quantum-inspired framework to dequantize
almost all known quantum machine learning algorithms with claimed exponential speedups.
The low-rank SDP problem also fits in that framework and a better time complexity has been
achieved in [11] due to a more efficient sampling method. However, the results in this paper
remain its own interest: our techniques are specially crafted for approximating matrices in
the form of e−εA and hence provide additional insights for this line of research.

1.4 Open questions
Our paper raises a few natural open questions for future work. For example:

Can we give faster sampling-based algorithms for solving LPs? Note that recent break-
throughs by [13, 25] solve LPs with complexity Õ(nω) where ω ≈ 2.373, significantly
faster than the state-of-the-art SDP solver [31] with complexity Õ(m(m2 + nω +mn2)).
What is the empirical performance of our sampling-based method? Admittedly, the
exponents of our poly-logarithmic factors are large; nevertheless, it is common that
numerical experiments perform better than theoretical guarantees, and we wonder if this
phenomenon can be observed when applying our method.

2 Preliminaries

2.1 Notations
Throughout the paper, we denote by m and n the number of constraints and the dimension
of constraint matrices in SDPs, respectively. We use ε to denote the precision of the solution
of the SDP feasibility problem in Eq. (6) of Definition 4. We use r to denote an upper bound
on the rank of matrices, i.e., maxi∈[n]{rank(Ai), rank(C)} ≤ r (we denote [n] := {1, . . . , n}).

For a vector v ∈ Cn, we use Dv to denote the probability distribution on [n] where the
probability of i being chosen is Dv(i) = |v(i)|2/ ‖v‖2 for all i ∈ [n]. When it is clear from the
context, a sample from Dv is often referred to as a sample from v. For a matrix A ∈ Cn×n,
we use ‖A‖ and ‖A‖F to denote its spectral norm and Frobenius norm, respectively; we
use A(i, ·) and A(·, j) to denote the ith row and jth column of A, respectively. We use
rows(A) to denote the n-dimensional vector formed by the norms of its row vectors, i.e.,
rows(A)(i) = ‖A(i, ·)‖, for all i ∈ [n].

2.2 Data structure for sampling and query access
As we develop sublinear-time algorithms for solving SDP in this paper, the whole constraint
matrices cannot be loaded into memory since storing them requires at least linear space
and time. Instead, we assume the sampling access of each constraint matrix as defined in
Definition 1. This sampling access relies on a natural probability distribution that arises in
many machine learning applications [15, 12, 18, 27, 28, 37, 36] (also see a survey by Kannan
and Vempala [26]).

8 Similar results were simultaneously obtained by Jethwani, Le Gall, and Singh [23].

MFCS 2020
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Technically, Ref. [15] used this sampling assumption to develop a sublinear algorithm for
approximating low-rank projection of matrices. It is well-known (as pointed out by [27] and
also used in [12, 18, 28, 37, 36]) that there exist low-overhead preprocessed data structures
that allow for the sampling access. More precisely, the existence of the data structures for
the sampling access defined in Definition 1 is stated as follows.

I Theorem 5 ([27]). Given a matrix M ∈ Cn×n with s non-zero entries, there exists a data
structure storing M in space O(s logn), which supports the following:
1. Read and write M(i, j) in O(logn) time.
2. Evaluate ‖M(i, ·)‖ in O(logn) time.
3. Evaluate

∥∥M∥∥2
F

in O(1) time.
4. Sample a row index of M according to statement 1 of Definition 1 in O(logn) time.
5. For each row, sample an index according to statement 2 of Definition 1 in O(logn) time.

Readers may refer to [27, Theorem A.1] for the proof of Theorem 5. In the following, we
give the intuition of the data structure, which is demonstrated in Figure 1. We show how to
sample from a row vector: we use a binary tree to store the data of each row. The square of
the absolute values of all entries, along with their original values are stored in the leaf nodes.
Each internode contains the sum of the values of its two immediate children. It is easy to
see that the root node contains the square of the norm of this row vector. To sample an
index and to query an entry from this row, logarithmic steps suffice. To fulfill statement 1 of
Definition 1, we treat the norms of rows as a vector (‖M(1, ·)‖ , . . . , ‖M(n, ·)‖) and organize
the data of this vector in a binary tree.

Figure 1 Illustration of a data structure that allows for sampling access to a row of M ∈ C4×4.

2.3 Feasibility testing of SDPs
We adopt the MMW framework to solve SDPs under the zero-sum approach [21, 39, 20, 30, 9].
This is formulated as the following theorem:

I Theorem 6 (Master algorithm). Feasibility of the SDP in Eqns. (6) to (8) can be tested by
Algorithm 1.

This theorem is proved in [9, Theorem 2.3]; note that the weight matrix therein is
Wt+1 = exp[ ε2

∑t
i=1 Mi] where Mi = 1

2 (In −Aji), and this gives the same Gibbs state as in
Line 1 since for any Hermitian matrix W ∈ Cn×n and real number c ∈ R,

eW+cI

Tr[eW+cI ] = eW ecI

Tr[eW ecI] = eW

Tr[eW ] . (10)

It should also be understood that this master algorithm is not the final algorithm; the step
of trace estimation with respect to the Gibbs state (in Line 1 and Line 1) will be fulfilled by
our sampling-based approach.
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Algorithm 1 MMW for testing feasibility of SDPs.

1 Set the initial Gibbs state ρ1 = In
n , and number of iterations T = 16 lnn

ε2 ;
2 for t = 1, . . . , T do
3 Find a jt ∈ [m] such that Tr[Ajtρt] > ajt + ε. If we cannot find such jt, claim

that ρt ∈ Sε (the SDP is feasible) and terminate the algorithm;
4 Define the new weight matrix Wt+1 := exp[− ε

4
∑t
i=1 Aji ] and Gibbs state

ρt+1 := Wt+1
Tr[Wt+1] ;

5 end
6 Claim that the SDP is infeasible and terminate the algorithm;

3 The main algorithm

Our main algorithm is Algorithm 7, it depends on several building blocks. To begin with, we
introduce a useful claim from [18, Lemma 11].

B Claim 7 (Trace inner product estimation [18]). Let A ∈ Cn×n and B ∈ Cn×n be two
Hermitian matrices. Given sampling and query access to A and query access to B. Then
one can estimate Tr[AB] with the additive error εs with probability at least 1− δ by using

O
(‖A‖2

F ‖B‖2
F

ε2s

(
Q(A) +Q(B) + S(A) +N(A)

)
log 1

δ

)
(11)

time and queries, where Q(B) is the cost of query access to B, and Q(A), S(A), N(A) are
the cost for query access, sampling access and row norm access to A.

Due to space constraints, the proofs of the theorems and lemmas in this section can be
found in the full version of this paper.

3.1 Weighted sampling
Given sample and query access to A1, . . . , Aτ , the objective of this section is to provide an
algorithm to give sample and query access to a matrix V , which approximates the eigenvectors
of A := A1 + · · ·+Aτ . Specifically, we will show that ‖V V †AV V † −A‖F can be bounded.

Note that trivially invoking the standard FKV sampling method [15] is not capable of
this task. In this paper, we propose the weighted sampling method. The intuition is to assign
each A` a different weight when computing the probability distribution, and then sampling
a row/column index of A according to this probability distribution. The main theorem we
prove in this section is as follows.

We first give the method for sampling row indices of A in Procedure 2. The objective of
this procedure is to sample a submatrix S such that S†S ≈ A†A.

After applying Procedure 2, we obtain the row indices i1, . . . , ip. Let S1, . . . , Sτ be
matrices such that S`(t, ·) = A`(it, ·)/

√
pPit for all t ∈ [p] and ` ∈ [τ ]. Define S as

S = S1 + · · ·+ Sτ . (12)

Next, we give the method for sampling column indices of S as in Procedure 3: we need to
sample a submatrix W from S such that WW † ≈ SS†.

Now, we obtained column indices j1, . . . , jp. Let W1, . . . ,Wτ be matrices such that
W`(·, t) = S`(·, jt)/

√
pP ′jt ∀ t ∈ [p], ` ∈ [τ ], where P ′j = 1

p

∑p
t=1 Qj|it for j ∈ [n]. Define W as

W = W1 + · · ·+Wτ . (13)
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Procedure 2 Weighted sampling of rows.
Input: The sampling and query access to each A` as in Definition 1 for

A =
∑τ
l=1 A`; integer p.

1 Sample p indices i1, . . . , ip from [n] according to the probability distribution
{P1, . . . , Pn} where Pi =

∑τ
j=1Drows(Aj)(i)

∥∥Aj∥∥2
F
/
(∑τ

`=1
∥∥A`∥∥2

F

)
by sampling j

according to
∥∥Aj∥∥2

F
/
(∑τ

`=1
∥∥A`∥∥2

F

)
then sample according to Drows(Aj);

Procedure 3 Weighted sampling of columns.
Input: The sampling and query access to each A` as in Definition 1 for

A =
∑τ
l=1 A`; i1, . . . , ip obtained in Procedure 2; integer p.

1 Do the following p times independently to obtain samples j1, . . . , jp. begin
2 Sample a row index t ∈ [p] uniformly at random;
3 Sample a column index j ∈ [n] from the probability distribution {Q1|it , . . . , Qn|it}

where Qj|it =
∑τ
k=1DAk(it,·)(j) ‖Ak(it, ·)‖2

/
(∑τ

`=1 ‖A`(it, ·)‖
2
)
;

4 end

With the weighted sampling method, we obtained a small submatrix W from A. Now,
we use the singular values and singular vectors of W to approximate the ones of A. This is
shown in Algorithm 4. The main consequence of Algorithm 4 is summarized in Theorem 8.

I Theorem 8. Let A = A1 + · · ·+Aτ ∈ Cn×n be a Hermitian matrix where A` ∈ Cn×n is
Hermitian, ‖A`‖ ≤ 1, and rank(A`) ≤ r for all ` ∈ [τ ]. The sampling and query access to
each A` is given as in Definition 1. Take the error parameter ε as the input of Algorithm 4
to obtain the singular values σ1, . . . , σr̃ ∈ R and singular vectors u1, . . . , ur̃ ∈ Cp for p
specified in Line 4 of Algorithm 4. Let V ∈ Cn×r̃ be the matrix such that V (·, j) = S†

σj
uj for

j ∈ {1, . . . , r̃}, where S is defined in Line 4 in Algorithm 4. Then with probability at least
9/10, it holds that

∥∥V V †AV V † −A∥∥
F
≤ ε

300r2 (2 + ε
300r2(τ+1) ).

3.2 Symmetric approximation of low-rank Hermitian matrices
Now we show that the spectral decomposition of the sum of low-rank Hermitian matrices
can be approximated in time logarithmic in the dimension with the given data structure.
We call this technique symmetric approximation.

Briefly speaking, suppose we are given the approximated left singular vectors V of A
outputted by Algorithm 4 such that

∥∥V V †AV V † −A∥∥
F
is bounded as in Theorem 8, then

we can approximately do spectral decomposition of A as follows. First, we approximate
the matrix V †AV by sampling. Then, since V †AV is a matrix with low dimension, we can
do spectral decomposition of the matrix efficiently as UDU† (see Lemma 9). Finally, we
show that V U is close to an isometry. Therefore, (V U)D(V U)† is an approximation to the
spectral decomposition of A.

I Lemma 9. Let V ∈ Cn×r̃ and A =
∑τ
` A` ∈ Cn×n be a Hermitian matrix. Given query

access and sampling access to A` for ` ∈ [τ ], where each query and sample take O(logn) time
, and query access to V , where each query takes O(p) time. Let r be some integer such that
r ≥ r̃, and let εs = ε

400r2 . Then, one can output a Hermitian matrix B̃ ∈ Cr̃×r̃ such that
‖V †AV − B̃‖F ≤ εs with probability 1− δ by using O

(
(p+ logn) r

5τ3

ε2 log 1
δ

)
time.
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Algorithm 4 Approximation of singular vectors.

Input: The sampling and query access to each A` as in Definition 1 for
A =

∑τ
l=1 A` with rank(A`) ≤ r; error parameter ε.

1 Set p = 2 · 1020 τ12r19

ε6 , γ = ε2

3×106τ2r6 ;
2 Use Procedure 2 to obtain row indices i1, . . . , ip;
3 Let S1, . . . , Sτ be matrices such that S`(t, ·) = A`(it, ·)/

√
pPit for all t ∈ [p] and

` ∈ [τ ], where Pi is defined in Line 2 in Procedure 2. Let S = S1 + · · ·+ Sτ ;
4 Use Procedure 3 to obtain column indices j1, . . . , jp;
5 Let W1, . . . ,Wτ be matrices such that W`(·, t) = S`(·, jt)/

√
pP ′jt for all t ∈ [p] and

` ∈ [τ ], where P ′j = 1
p

∑p
t=1 Qj|it for j ∈ [n] and Qj|i is defined in Line 3 in

Procedure 3. Let W = W1 + · · ·+Wτ ;
6 (Assume the rank of A is r̂.) Compute the top r̂ singular values σ1, . . . , σr̂ of W and

their corresponding left singular vectors u1, . . . , ur̂;
7 Discard the singular values and their corresponding singular vectors satisfying

σ2
j < γ

∑τ
`=1
∥∥W`

∥∥2
F
. Let the remaining number of singular values be r̃;

8 Output i1, . . . , ip, Pi1 , . . . , Pip , σ1, . . . , σr̃ and u1, . . . , ur̃ ;

The algorithm for approximating the spectral decomposition of A is described in Al-
gorithm 5, and the effectiveness of Algorithm 5 is summarized in Lemma 10:

Algorithm 5 Approximation of the spectral decomposition of A.

Input: The sampling and query access to each A` as in Definition 1 for
A =

∑τ
l=1 A` and query access to V ∈ Cn×r̃ (obtained from Algorithm 4,

also see Theorem 8); error parameter ε.
1 Compute a matrix B̃ ∈ Cr̃×r̃ whose spectrum approximates that of A (this is

achieved by Lemma 9);
2 Compute the spectral decomposition UDU† of matrix B̃;
3 Output an isometry U ∈ Cr̃×r̃ and a diagonal matrix D ∈ Cr̃×r̃ such that UDU† is

the spectral decomposition of B̃.

I Lemma 10. Algorithm 5 outputs a Hermitian matrix B̃ ∈ Cr̃×r̃ with probability at least
1− δ with time and query complexity O((p+ logn) r

5τ3

ε2 log 1
δ ) such that

‖V B̃V † −A‖ ≤
(

1 + ε

300r2(τ + 1)

)2 ε

400r2 +
(

2 + ε

300r2(τ + 1)

) ε

300r2 . (14)

3.3 Approximating Gibbs states
In this subsection, we combine our techniques from Section 3.1 and Section 3.2 to give
a sampling-based estimator of the traces of a Gibbs state times a constraint A`. This is
formulated as Algorithm 6.

We show that the output of Algorithm 6 ε-approximates Tr[A`ρ] for ρ = e−
ε
2A/Tr[e− ε2A].

Let Ã = V V †AV V †. Let U and D be outputs of Algorithm 5, which will be used in
Algorithm 6. We suppose

∥∥Ã−A∥∥
F
≤ (2 + ε

300r2(τ+1) ) ε
300r2 as in Theorem 8.
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Algorithm 6 Approximation of the trace.

Input: The sampling and query access to each A` as in Definition 1 for A =
∑τ
l=1 A`;

query access to V ∈ Cn×r̃ (obtained from Algorithm 4, also see Theorem 8);
matrices U and D (obtained from Algorithm 5) such that (V U)D(V U)† is
an approximated spectral decomposition of A as in Lemma 10.

1 Compute η = Tr[e− ε2D];
2 Approximate Tr[A`(V U)(e− ε2D/Tr[e− ε2D])(V U)†] by ζ according to Claim 7;
3 Output ζ, η.

I Lemma 11. Let ρ = e−
ε
2A

Tre−
ε
2A

and ρ̂ = (V U)e−
ε
2D(V U)†

Tre−
ε
2D

. Suppose ‖A − Ã‖F ≤ (2 +
ε

300r2(τ+1) ) ε
300r2 . Let A` be a Hermitian matrix with the promise that ‖A`‖ ≤ 1 and

rank(A`) ≤ r. Then Algorithm 6 outputs ζ such that

|Tr[A`ρ]− ζ| ≤ ε (15)

with probability 1− δ in time O( 4
ε2 (logn+ τpr) log 1

δ ).

3.4 Proof of the main algorithm
We finally state our main result on solving SDPs via sampling.

I Theorem 12. Given Hermitian matrices {A1, . . . , Am} with the promise that each of
them has rank at most r, spectral norm at most 1, and the sampling access of each Ai is given
by Definition 1. Also given a1, . . . , am ∈ R and ε > 0. Then Algorithm 7 gives a succinct
description and any entry (see Remark 13) of the solution of the SDP feasibility problem

Tr[AiX] ≤ ai + ε ∀ i ∈ [m]; X � 0; Tr[X] = 1 (16)

with probability at least 2/3 in O(mr
57 ln37 n
ε92 ) time.

Algorithm 7 Feasibility testing of SDPs by our sampling-based approach.

1 Set the initial Gibbs state ρ1 = In
n , and number of iterations T = 16 lnn

ε2 ;
2 for t = 1, . . . , T do
3 Find a jt ∈ [m] such that Tr[Ajtρt] > ajt + ε using Algorithm 6. If we cannot find

such jt, claim that ρt ∈ Sε and terminate the algorithm. Output
ρt(`, j) =

∑r̃
k=1 V (`, k)eσkε/2V (j, k)∗/η, where V (`, j) =

∑p
s=1

A∗(is,`)uj(t)√
Pisσj

,
i1, . . . , ip, P11 , . . . , Pip , σ1, . . . , σr̃ and u1, . . . , ur̃ are obtained from Algorithm 4
and η is obtained from Algorithm 6;

4 Define the new weight matrix Wt+1 := exp[− ε
4
∑t
i=1 Aji ] and Gibbs state

ρt+1 := Wt+1
Tr[Wt+1] ;

5 end
6 Claim that the SDP is infeasible and terminate the algorithm;

The algorithm follows the master algorithm in Theorem 6. The main challenge is to
estimate Tr[Ajtρt] where ρt is the Gibbs state at iteration t; this is achieved by Lemma 11
in Section 3.3.
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Proof. Correctness: The correctness of Algorithm 7 directly follows from Lemma 11. Spe-
cifically, we have shown that one can estimate the quantity Tr[Ajtρt] with precision ε with
high probability by applying Algorithms 4 to 6.

Time complexity: First, we show that given the data structure in Theorem 5, Algorithm 4
can be computed in time O(p3 + pτ log τ logn). Procedure 2 and Procedure 3 both can be
done in time O(pτ log τ logn). There are many ways to implement Procedure 2. For example,
build a binary tree as in Theorem 5 for ‖A1‖F , . . . , ‖Aτ‖F to sample j ∈ [τ ] according
to ‖Aj‖2

F /(
∑τ
`=1 ‖A`‖

2
F ), and then use the data structures in Theorem 5 to sample from

Drows(Aj). The time complexity is O(τ log τ logn). Similarly, we can implement Procedure 3
in time O(τ log τ logn). Hence, the time complexity to construct the matrix W and compute
its SVD is O(pτ log τ logn+ p3). Algorithm 4 succeeds with probability 9/10.

Then, by Lemma 10 and Lemma 11, Algorithms 5 and 6 takes time O((p+logn) r
5τ3

ε2 log 1
δ )

and O( 4
ε2 (logn+τpr) log 1

δ ) respectively to succeed with probability at least 1−δ. Recall from
the previous paragraph, Algorithm 4 takes time O(pτ log τ logn+ p3). In total, Algorithms 4
to 6 are each called Tm = 16m lnn

ε2 times. We specify that
τ = T = 16 lnn

ε2 , and
p = 2 · 1020 τ12r19

ε6

(see also Algorithm 4). By setting δ as a small enough constant (say δ = 1/6) and noticing
the p dominates other terms, Algorithm 7 succeeds with probability at least 2/3 in time
O(Tmp3) = O

(
mr57 ln37 n

ε92

)
. J

I Remark 13. Theorem 12 solves the SDP feasibility problem, i.e., to decide S0 = ∅ or Sε 6= ∅.
For the SDP optimization problem in Eqns. (1) to (3), an approximation to the optimal
value can be found by a binary search with feasibility subroutines. (see Footnote 6); however,
writing down the approximate solution would take n2 space, ruining the poly-logarithmic
complexity in n. Nevertheless,

we have its succinct representation i1, . . . , ip, Pi1 , . . . , Pip , σ1, . . . , σr̃, u1, . . . , ur̃, and η;
we can compute any entry of the solution matrix according to this succinct description as
in Step 3 of Algorithm 7.

With the succinct description given in the first statement, one can perform other operations
on the solution matrix using the similar sampling-based methods.
I Remark 14. The large polynomial overhead in Theorem 12 may not be necessary in practice
and can potentially be reduced by more fine-grained analysis. This is also suggested by
numerics in practice (see [8]).

Application to shadow tomography. As a direct corollary of Theorem 12, we have:

I Corollary 15. Given Hermitian matrices {E1, . . . , Em} with the promise that each of
E1, . . . , Em has rank at most r, 0 � Ei � I and the sampling access to Ei is given as in
Definition 1 for all i ∈ [m]. Also given p1, . . . , pm ∈ R. Then for any ε > 0, the shadow
tomography problem

Find σ such that |Tr[σEi]− pi| ≤ ε ∀ i ∈ [m] subject to σ � 0, Tr[σ] = 1 (17)

can be solved with probability 1− δ with cost O(m · poly(logn, 1/ε, log(1/δ), r)).

I Remark 16. Similar to Remark 13, σ can be stored as a succinct representation because we
can have σ = exp[ ε2

∑t

τ=1
(−1)iτAjτ ]

Tr
[

exp[ ε2
∑t

τ=1
(−1)iτAjτ ]

] in Corollary 15, where t ≤ T and iτ ∈ {0, 1}, jτ ∈ [m]

for all τ ∈ [t]. Storing all iτ , jτ takes t(log2 m+ 1) = O(logm logn/ε2) bits.
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