75 research outputs found

    Identification of Hyper-Methylated Tumor Suppressor Genes-Based Diagnostic Panel for Esophageal Squamous Cell Carcinoma (ESCC) in a Chinese Han Population

    Get PDF
    DNA methylation-based biomarkers were suggested to be promising for early cancer diagnosis. However, DNA methylation-based biomarkers for esophageal squamous cell carcinoma (ESCC), especially in Chinese Han populations have not been identified and evaluated quantitatively. Candidate tumor suppressor genes (N = 65) were selected through literature searching and four public high-throughput DNA methylation microarray datasets including 136 samples totally were collected for initial confirmation. Targeted bisulfite sequencing was applied in an independent cohort of 94 pairs of ESCC and normal tissues from a Chinese Han population for eventual validation. We applied nine different classification algorithms for the prediction to evaluate to the prediction performance. ADHFE1, EOMES, SALL1 and TFPI2 were identified and validated in the ESCC samples from a Chinese Han population. All four candidate regions were validated to be significantly hyper-methylated in ESCC samples through Wilcoxon rank-sum test (ADHFE1, P = 1.7 × 10-3; EOMES, P = 2.9 × 10-9; SALL1, P = 3.9 × 10-7; TFPI2, p = 3.4 × 10-6). Logistic regression based prediction model shown a moderately ESCC classification performance (Sensitivity = 66%, Specificity = 87%, AUC = 0.81). Moreover, advanced classification method had better performances (random forest and naive Bayes). Interestingly, the diagnostic performance could be improved in non-alcohol use subgroup (AUC = 0.84). In conclusion, our data demonstrate the methylation panel of ADHFE1, EOMES, SALL1 and TFPI2 could be an effective methylation-based diagnostic assay for ESCC

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    sEMG-based Motion Recognition for Robotic Surgery Training - A Preliminary Study

    No full text
    International audienceRobotic surgery represents a major breakthrough in the evolution of medical technology. Accordingly, efficient skill training and assessment methods should be developed to meet the surgeon’s need of acquiring such robotic skills over a relatively short learning curve in a safe manner. Different from conventional training and assessment methods, we aim to explore the surface electromyography (sEMG) signal during the training process in order to obtain semantic and interpretable information to help the trainee better understand and improve his/her training performance. As a preliminary study, motion primitive recognition based on sEMG signal is studied in this work. Using machine learning (ML) technique, it is shown that the sEMG-based motion recognition method is feasible and promising for hand motions along 3 Cartesian axes in the virtual reality (VR) environment of a commercial robotic surgery training platform, which will hence serve as the basis for new robotic surgical skill assessment criterion and training guidance based on muscle activity information.Considering certain motion patterns were less accurately recognized than others, more data collection and deep learning-based analysis will be carried out to further improve the recognition accuracy in future researc

    Improved CRM Model for Inter-Well Connectivity Estimation and Production Optimization: Case Study for Karst Reservoirs

    No full text
    Due to the coexistence of multiple types of reservoir bodies and widely distributed aquifer support in karst carbonate reservoirs, it remains a great challenge to understand the reservoir flow dynamics based on traditional capacitance–resistance (CRM) models and Darcy’s percolation theory. To solve this issue, an improved injector–producer-pair-based CRM model coupling the effect of active aquifer support was first developed and combined with the newly-developed Stochastic Simplex Approximate Gradient (StoSAG) optimization algorithm for accurate inter-well connectivity estimation in a waterflood operation. The improved CRM–StoSAG workflow was further applied for real-time production optimization to find the optimal water injection rate at each control step by maximizing the net present value of production. The case study conducted for a typical karst reservoir indicated that the proposed workflow can provide good insight into complex multi-phase flow behaviors in karst carbonate reservoirs. Low connectivity coefficient and time delay constant most likely refer to active aquifer support through a high-permeable flow channel. Moreover, the injector–producer pair may be interconnected by complex fissure zones when both the connectivity coefficient and time delay constant are relatively large

    Production Characteristics with Different Superimposed Modes Using Variogram: A Case Study of a Super-Giant Carbonate Reservoir in the Middle East

    No full text
    Heterogeneity of permeability is an important factor affecting the production of a carbonate reservoir. How to correctly characterize the heterogeneity of permeability has become a key issue for carbonate reservoir development. In this study, the reservoirs were categorized into four superimposed modes based on the actual logging data from a super-giant heterogeneous carbonate reservoir in the Middle East. A modified permeability formula in terms of the variogram method was presented to reflect the heterogeneity of the reservoirs. Furthermore, the models of oil production and water cut were established and the analytical solutions were obtained. The calculation results show that the present model can predict the productivity of wells with different heterogeneous layers more accurately and rapidly. The larger the varigoram value, the stronger the heterogeneity of the reservoirs, and the faster the decline of production owing to a quicker reduction of formation pressure. With the increase in variogram value, the relative permeability of the oil phase is smaller and the water phase larger, and the water cut becomes larger. This study has provided a quick and reasonable prediction model for heterogeneous reservoir

    Production Forecasting Based on Attribute-Augmented Spatiotemporal Graph Convolutional Network for a Typical Carbonate Reservoir in the Middle East

    No full text
    Production forecasting plays an important role in development plans during the entire period of petroleum exploration and development. Artificial intelligence has been extensively investigated in recent years because of its capacity to extensively analyze and interpret complex data. With the emergence of spatiotemporal models that can integrate graph convolutional networks (GCN) and recurrent neural networks (RNN), it is now possible to achieve multi-well production prediction by considering the impact of interactions between producers and historical production data simultaneously. Moreover, an accurate prediction not only depends on historical production data but also on the influence of neighboring injectors’ historical gas injection rate (GIR). Therefore, based on the assumption that introducing GIR can enhance prediction accuracy, this paper proposes a deep learning-based hybrid production forecasting model that is aimed at considering both the spatiotemporal characteristics of producers and the GIR of neighboring injectors. Specifically, we integrated spatiotemporal characteristics and GIR into an attribute-augmented spatiotemporal graph convolutional network (AST-GCN) and gated recurrent units (GRU) neural network to extract intricate temporal correlations from historical data. The method proposed in this paper has been successfully applied in a well pattern (including five producers and seven gas injectors) in a low-permeability carbonate reservoir in the Middle East. In single well production forecasting, the error of AST-GCN is 63.2%, 37.3%, and 16.1% lower in MedAE, MAE, and RMSE compared with GRU and 62.9%, 44.6%, and 28.9% lower compared with RNS. Similarly, the accuracy of AST-GCN is 15.9% and 35.8% higher than GRU and RNS in single well prediction. In well-pattern production forecasting, the error of AST-GCN is 41.2%, 64.2%, and 75.2% lower in RMSE, MAE, and MedAE compared with RNS, while the accuracy of AST-GCN is 29.3% higher. After different degrees of Gaussian noise are added to the actual data, the average change in AST-GCN is 3.3%, 0.4%, and 1.2% in MedAE, MAE, and RMSE, which indicates the robustness of the proposed model. The results show that the proposed model can consider the production data, gas injection data, and spatial correlation at the same time, which performs well in oil production forecasts
    • …
    corecore