3,496 research outputs found

    Efficient quantum key distribution scheme with nonmaximally entangled states

    Get PDF
    We propose an efficient quantum key distribution scheme based on entanglement. The sender chooses pairs of photons in one of the two equivalent nonmaximally entangled states randomly, and sends a sequence of photons from each pair to the receiver. They choose from the various bases independently but with substantially different probabilities, thus reducing the fraction of discarded data, and a significant gain in efficiency is achieved. We then show that such a refined data analysis guarantees the security of our scheme against a biased eavesdropping strategy.Comment: 5 Pages, No Figur

    Perturbative QCD analysis of B→ϕK∗B \to \phi K^* decays

    Full text link
    We study the first observed charmless B→VVB\to VV modes, the B→ϕK∗B\to\phi K^* decays, in perturbative QCD formalism. The obtained branching ratios B(B→ϕK∗)∌15×10−6B(B\to\phi K^*)\sim 15 \times 10^{-6} are larger than ∌9×10−6\sim 9\times 10^{-6} from QCD factorization. The comparison of the predicted magnitudes and phases of the different helicity amplitudes, and branching ratios with experimental data can test the power counting rules, the evaluation of annihilation contributions, and the mechanism of dynamical penguin enhancement in perturbative QCD, respectively.Comment: 14 pages, 2 tables, brief disscussion on hard sacle added, version to appear in PR

    kTk_T factorization of exclusive processes

    Get PDF
    We prove kTk_T factorization theorem in perturbative QCD (PQCD) for exclusive processes by considering Ï€Îłâˆ—â†’Îł(π)\pi\gamma^*\to \gamma(\pi) and B→γ(π)lΜˉB\to\gamma(\pi) l\bar\nu. The relevant form factors are expressed as the convolution of hard amplitudes with two-parton meson wave functions in the impact parameter bb space, bb being conjugate to the parton transverse momenta kTk_T. The point is that on-shell valence partons carry longitudinal momenta initially, and acquire kTk_T through collinear gluon exchanges. The bb-dependent two-parton wave functions with an appropriate path for the Wilson links are gauge-invariant. The hard amplitudes, defined as the difference between the parton-level diagrams of on-shell external particles and their collinear approximation, are also gauge-invariant. We compare the predictions for two-body nonleptonic BB meson decays derived from kTk_T factorization (the PQCD approach) and from collinear factorization (the QCD factorization approach).Comment: 11 pages, REVTEX, 5 figure

    Nonfactorizable contributions to B→D(∗)MB \to D^{(*)} M decays

    Full text link
    While the factorization assumption works well for many two-body nonleptonic BB meson decay modes, the recent measurement of Bˉ→D(∗)0M0\bar B\to D^{(*)0}M^0 with M=πM=\pi, ρ\rho and ω\omega shows large deviation from this assumption. We analyze the B→D(∗)MB\to D^{(*)}M decays in the perturbative QCD approach based on kTk_T factorization theorem, in which both factorizable and nonfactorizable contributions can be calculated in the same framework. Our predictions for the Bauer-Stech-Wirbel parameters, ∣a2/a1∣=0.43±0.04|a_2/a_1|= 0.43\pm 0.04 and Arg(a2/a1)∌−42∘Arg(a_2/a_1)\sim -42^\circ and ∣a2/a1∣=0.47±0.05|a_2/a_1|= 0.47\pm 0.05 and Arg(a2/a1)∌−41∘Arg(a_2/a_1)\sim -41^\circ, are consistent with the observed B→DπB\to D\pi and B→D∗πB\to D^*\pi branching ratios, respectively. It is found that the large magnitude ∣a2∣|a_2| and the large relative phase between a2a_2 and a1a_1 come from color-suppressed nonfactorizable amplitudes. Our predictions for the Bˉ0→D(∗)0ρ0{\bar B}^0\to D^{(*)0}\rho^0, D(∗)0ωD^{(*)0}\omega branching ratios can be confronted with future experimental data.Comment: 25 pages with Latex, axodraw.sty, 6 figures and 5 tables, Version published in PRD, Added new section 5 and reference

    Local channels preserving maximal entanglement or Schmidt number

    Full text link
    Maximal entanglement and Schmidt number play an important role in various quantum information tasks. In this paper, it is shown that a local channel preserves maximal entanglement state(MES) or preserves pure states with Schmidt number rr(rr is a fixed integer) if and only if it is a local unitary operation.Comment: 10 page

    Reducing the communication complexity with quantum entanglement

    Full text link
    We propose a probabilistic two-party communication complexity scenario with a prior nonmaximally entangled state, which results in less communication than that is required with only classical random correlations. A simple all-optical implementation of this protocol is presented and demonstrates our conclusion.Comment: 4 Pages, 2 Figure

    Applicability of perturbative QCD to Λb→Λc\Lambda_b \to \Lambda_c decays

    Full text link
    We develop perturbative QCD factorization theorem for the semileptonic heavy baryon decay Λb→ΛclΜˉ\Lambda_b \to \Lambda_c l\bar{\nu}, whose form factors are expressed as the convolutions of hard bb quark decay amplitudes with universal Λb\Lambda_b and Λc\Lambda_c baryon wave functions. Large logarithmic corrections are organized to all orders by the Sudakov resummation, which renders perturbative expansions more reliable. It is observed that perturbative QCD is applicable to Λb→Λc\Lambda_b \to \Lambda_c decays for velocity transfer greater than 1.2. Under requirement of heavy quark symmetry, we predict the branching ratio B(Λb→ΛclΜˉ)∌2B(\Lambda_b \to \Lambda_c l{\bar\nu})\sim 2%, and determine the Λb\Lambda_b and Λc\Lambda_c baryon wave functions.Comment: 12 pages in Latex file, 3 figures in postscript files, some results are changed, but the conclusion is the sam

    Shape-induced anisotropy in antidot arrays from self-assembled templates

    No full text
    Using self-assembly of polystyrene spheres, well-ordered templates have been prepared on glass and silicon substrates. Strong guiding of self-assembly is obtained on photolithographically structured silicon substrates. Magnetic antidot arrays with three-dimensional architecture have been prepared by electrodeposition in the pores of these templates. The shape anisotropy demonstrates a crucial impact on magnetization reversal processes

    Final state interaction and B→KKB\to KK decays in perturbative QCD

    Get PDF
    We predict branching ratios and CP asymmetries of the B→KKB\to KK decays using perturbative QCD factorization theorem, in which tree, penguin, and annihilation contributions, including both factorizable and nonfactorizable ones, are expressed as convolutions of hard six-quark amplitudes with universal meson wave functions. The unitarity angle ϕ3=90o\phi_3= 90^o and the BB and KK meson wave functions extracted from experimental data of the B→KπB\to K\pi and ππ\pi\pi decays are employed. Since the B→KKB\to KK decays are sensitive to final-state-interaction effects, the comparision of our predictions with future data can test the neglect of these effects in the above formalism. The CP asymmetry in the B±→K±K0B^\pm\to K^\pm K^0 modes and the Bd0→K±K∓B_d^0\to K^\pm K^\mp branching ratios depend on annihilation and nonfactorizable amplitudes. The B→KKB\to KK data can also verify the evaluation of these contributions.Comment: 13 pages in latex file, 7 figures in ps file

    Hamiltonicity of 3-arc graphs

    Get PDF
    An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y)(v,u,x,y) of vertices such that both (v,u,x)(v,u,x) and (u,x,y)(u,x,y) are paths of length two. The 3-arc graph of a graph GG is defined to have vertices the arcs of GG such that two arcs uv,xyuv, xy are adjacent if and only if (v,u,x,y)(v,u,x,y) is a 3-arc of GG. In this paper we prove that any connected 3-arc graph is Hamiltonian, and all iterative 3-arc graphs of any connected graph of minimum degree at least three are Hamiltonian. As a consequence we obtain that if a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is Hamiltonian. This confirms the well known conjecture, that all vertex-transitive graphs with finitely many exceptions are Hamiltonian, for a large family of vertex-transitive graphs. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs.Comment: in press Graphs and Combinatorics, 201
    • 

    corecore