241 research outputs found

    Multifocal micronodular pneumocyte hyperplasia with a novel mutation in TSC1: a case report

    Get PDF
    We report on a 34-year-old woman diagnosed with tuberous sclerosis complex. The patient was admitted for respiratory manifestations, while multi-organ involvement made the diagnostic process challenging. Genetic testing revealed a novel mutation TSC1 c.2094_2110del (p.His699Ter), which expands the disease-causing variant spectrum. Our results may facilitate the disease diagnostics and help to devise genetic counseling and targeted gene therapy

    A multi-port current-limiting hybrid DC crcuit breaker

    Get PDF
    Recently the hybrid multi-port DC circuit breaker (MP-DCCB) is becoming popular in protecting HVDC grids, thanks to their re-duction of power electronics devices. In this paper, an enhanced multi-port current-limiting DCCB (MP-CLCB) for multiple line protection is proposed. The integrated fault current limiter (FCL) inside the MP-CLCB can clear the fault faster with slightly in-creased costs. To reduce the energy dissipation requirement for the surge arresters caused by the newly added current-limiting path, an energy transfer path which provides a loop with the in-ductors during the current decay stage is designed. The theoreti-cal analysis of the pre-charging, current-limiting, fault interrup-tion and energy dissipation of the MP-CLCB is carried out. Moreover, the design principles of the energy dissipation and the key parameters of the MP-CLCB are provided. The proposed approaches are verified through simulations in PSCAD/EMTDC. The results show that the MP-CLCB can replace multiple DCCBs, accelerate the fault current interruption and reduce the energy dissipation requirement for the surge arresters

    Chiral symmetry breaking for deterministic switching of perpendicular magnetization by spin-orbit torque

    Full text link
    Symmetry breaking is a characteristic to determine which branch of a bifurcation system follows upon crossing a critical point. Specifically, in spin-orbit torque (SOT) devices, a fundamental question arises: how to break the symmetry of the perpendicular magnetic moment by the in-plane spin polarization? Here, we show that the chiral symmetry breaking by the DMI can induce the deterministic SOT switching of the perpendicular magnetization. By introducing a gradient of saturation magnetization or magnetic anisotropy, non-collinear spin textures are formed by the gradient of effective SOT strength, and thus the chiral symmetry of the SOT-induced spin textures is broken by the DMI, resulting in the deterministic magnetization switching. We introduce a strategy to induce an out-of-plane (z) gradient of magnetic properties, as a practical solution for the wafer-scale manufacture of SOT devices.Comment: 16 pages, 4 figure

    A modified lumped parameter model of distribution transformer winding

    Get PDF
    This work was supported by the National Key Research and Development Plan of China under Grant (2016YFB0900600XXX).The modelling of the distribution transformer winding is the starting point and serves as important basis for the transformer characteristics analysis and the lightning pulse response prediction. A distributed parameters model can depict the winding characteristics accurately, but it requires complex calculations. Lumped parameter model requires less calculations, but its applicable frequency range is not wide. This paper studies the amplitude-frequency characteristics of the lightning wave, compares the transformer modelling methods and finally proposes a modified lumped parameter model, based on the above comparison. The proposed model minimizes the errors provoked by the lumped parameter approximation, and the hyperbolic functions of the distributed parameter model. By this modification it becomes possible to accurately describe the winding characteristics and rapidly obtain the node voltage response. The proposed model can provide theoretical and experimental support to lightning protection of the distribution transformer.publishersversionpublishe

    Integrated multi-omics identified the novel intratumor microbiome-derived subtypes and signature to predict the outcome, tumor microenvironment heterogeneity, and immunotherapy response for pancreatic cancer patients

    Get PDF
    Background: The extremely malignant tumour known as pancreatic cancer (PC) lacks efficient prognostic markers and treatment strategies. The microbiome is crucial to how cancer develops and responds to treatment. Our study was conducted in order to better understand how PC patients’ microbiomes influence their outcome, tumour microenvironment, and responsiveness to immunotherapy.Methods: We integrated transcriptome and microbiome data of PC and used univariable Cox regression and Kaplan–Meier method for screening the prognostic microbes. Then intratumor microbiome-derived subtypes were identified using consensus clustering. We utilized LASSO and Cox regression to build the microbe-related model for predicting the prognosis of PC, and utilized eight algorithms to assess the immune microenvironment feature. The OncoPredict package was utilized to predict drug treatment response. We utilized qRT-PCR to verify gene expression and single-cell analysis to reveal the composition of PC tumour microenvironment.Results: We obtained a total of 26 prognostic genera in PC. And PC samples were divided into two microbiome-related subtypes: Mcluster A and B. Compared with Mcluster A, patients in Mcluster B had a worse prognosis and higher TNM stage and pathological grade. Immune analysis revealed that neutrophils, regulatory T cell, CD8+ T cell, macrophages M1 and M2, cancer associated fibroblasts, myeloid dendritic cell, and activated mast cell had remarkably higher infiltrated levels within the tumour microenvironment of Mcluster B. Patients in Mcluster A were more likely to benefit from CTLA-4 blockers and were highly sensitive to 5-fluorouracil, cisplatin, gemcitabine, irinotecan, oxaliplatin, and epirubicin. Moreover, we built a microbe-derived model to assess the outcome. The ROC curves showed that the microbe-related model has good predictive performance. The expression of LAMA3 and LIPH was markedly increased within pancreatic tumour tissues and was linked to advanced stage and poor prognosis. Single-cell analysis indicated that besides cancer cells, the tumour microenvironment of PC was also rich in monocytes/macrophages, endothelial cells, and fibroblasts. LIPH and LAMA3 exhibited relatively higher expression in cancer cells and neutrophils.Conclusion: The intratumor microbiome-derived subtypes and signature in PC were first established, and our study provided novel perspectives on PC prognostic indicators and treatment options

    Safety and efficacy of aspirin after combined cerebral revascularization for ischemic moyamoya disease: A prospective study

    Get PDF
    ObjectiveTo analyze the safety and efficacy of regular aspirin use after combined cerebral revascularization in patients with ischemic moyamoya disease.MethodsFrom December 2020 to October 2021, a total of 326 patients diagnosed with ischemic moyamoya disease by global cerebral angiography and undergoing first-time combined cerebral revascularization at the Moyamoya Disease Diagnosis and Treatment Research Center of our hospital were selected. Combined cerebral revascularization: superficial temporal artery-middle cerebral artery (STA-MCA) +encephalo-duro-myo-synangiosis (EDMS).Patients were screened by 2 senior physicians according to established inclusion/exclusion criteria. Patients were divided into aspirin and non-aspirin groups based on whether they received regular oral aspirin after surgery. A total of 133 patients were enrolled in the aspirin group. A total of 71 patients (204 cases) were enrolled in the non-aspirin group. Related data were collected before and 1 year after surgery and statistically analyzed to assess the prognosis of both groups.ResultsIn the two groups, the mRS Score was significantly different after one year (P = 0.023). TIA occurred in 26 patients (19.5%) in the aspirin group and 27 patients (38.0%) in the non-aspirin group within one year after surgery, and the difference between the two groups was statistically significant (P = 0.004). There was no significant difference in cerebral perfusion stage, the improvement rate of cerebral perfusion, Matsushima grading, bypass patency, and other complications within one year after the operation (P > 0.05).ConclusionsIn patients with ischemic moyamoya disease who underwent combined cerebral revascularization, postoperative administration of aspirin can reduce the incidence of TIA without increasing the risk of bleeding, but it can not significantly improve the cerebral perfusion of the operation side, Matsushima grading, and bypass patency

    Value co-creation in industrial AI: The interactive role of B2B supplier, customer and technology provider

    Get PDF
    This research explores the interactive role of supplier, customer and technology company in business-to-business (B2B) marketing when they develop and use industrial artificial intelligence (AI). From a value co-creation perspective and following a service-dominant logic, this study aims to identify essential value types that are created collaboratively by B2B professionals (namely suppliers, customers and AI providers), and critical capabilities that contribute to their value co-creation practices. Nineteen in-depth semi-structured interviews were conducted with three groups of B2B stakeholders in six companies that involved in an industrial AI development and usage project. The data was then analysed using a thematic analysis approach. The results of this research contain a categorisation of four value types and three sets of capabilities, together with the interrelationships between them. This study contributes to the literature of value co-creation, information system and B2B marketing by bridging these three disciplines within the context of industrial AI development and usage

    Extreme long-lifetime self-assembled monolayer for air-stable molecular junctions

    Get PDF
    The molecular electronic devices based on self-assembled monolayer (SAM) on metal surfaces demonstrate novel electronic functions for device minimization yet are unable to realize in practical applications, due to their instability against oxidation of the sulfur-metal bond. This paper describes an alternative to the thiolate anchoring group to form stable SAMs on gold by selenides anchoring group. Because of the formation of strong selenium-gold bonds, these stable SAMs allow us to incorporate them in molecular tunnel junctions to yield extremely stable junctions for over 200 days. A detailed structural characterization supported by spectroscopy and first-principles modeling shows that the oxidation process is much slower with the selenium-gold bond than the sulfur-gold bond, and the selenium-gold bond is strong enough to avoid bond breaking even when it is eventually oxidized. This proof of concept demonstrates that the extraordinarily stable SAMs derived from sel-enides are useful for long-lived molecular electronic devices and can possibly become important in many air-stable applications involving SAMs.</p
    • …
    corecore