124 research outputs found

    Syntactic Complexity of Prefix-, Suffix-, Bifix-, and Factor-Free Regular Languages

    Get PDF
    The syntactic complexity of a regular language is the cardinality of its syntactic semigroup. The syntactic complexity of a subclass of the class of regular languages is the maximal syntactic complexity of languages in that class, taken as a function of the state complexity nn of these languages. We study the syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages. We prove that nnβˆ’2n^{n-2} is a tight upper bound for prefix-free regular languages. We present properties of the syntactic semigroups of suffix-, bifix-, and factor-free regular languages, conjecture tight upper bounds on their size to be (nβˆ’1)nβˆ’2+(nβˆ’2)(n-1)^{n-2}+(n-2), (nβˆ’1)nβˆ’3+(nβˆ’2)nβˆ’3+(nβˆ’3)2nβˆ’3(n-1)^{n-3} + (n-2)^{n-3} + (n-3)2^{n-3}, and (nβˆ’1)nβˆ’3+(nβˆ’3)2nβˆ’3+1(n-1)^{n-3} + (n-3)2^{n-3} + 1, respectively, and exhibit languages with these syntactic complexities.Comment: 28 pages, 6 figures, 3 tables. An earlier version of this paper was presented in: M. Holzer, M. Kutrib, G. Pighizzini, eds., 13th Int. Workshop on Descriptional Complexity of Formal Systems, DCFS 2011, Vol. 6808 of LNCS, Springer, 2011, pp. 93-106. The current version contains improved bounds for suffix-free languages, new results about factor-free languages, and new results about reversa

    A STOCHASTIC SIMULATION-BASED HYBRID INTERVAL FUZZY PROGRAMMING APPROACH FOR OPTIMIZING THE TREATMENT OF RECOVERED OILY WATER

    Get PDF
    In this paper, a stochastic simulation-based hybrid interval fuzzy programming (SHIFP) approach is developed to aid the decision-making process by solving fuzzy linear optimization problems. Fuzzy set theory, probability theory, and interval analysis are integrated to take into account the effect of imprecise information, subjective judgment, and variable environmental conditions. A case study related to oily water treatment during offshore oil spill clean-up operations is conducted to demonstrate the applicability of the proposed approach. The results suggest that producing a random sequence of triangular fuzzy numbers in a given interval is equivalent to a normal distribution when using the centroid defuzzification method. It also shows that the defuzzified optimal solutions follow the normal distribution and range from 3,000-3,700 tons, given the budget constraint (CAD 110,000-150,000). The normality seems to be able to propagate throughout the optimization process, yet this interesting finding deserves more in-depth study and needs more rigorous mathematical proof to validate its applicability and feasibility. In addition, the optimal decision variables can be categorized into several groups with different probability such that decision makers can wisely allocate limited resources with higher confidence in a short period of time. This study is expected to advise the industries and authorities on how to distribute resources and maximize the treatment efficiency of oily water in a short period of time, particularly in the context of harsh environments

    L2p-Forms and Ricci Flow with Bounded Curvature on Manifolds

    Get PDF
    In this paper, we study the evolution of L 2 p-forms under Ricci flow with bounded curvature on a complete noncompact or a compact Riemannian manifold. We show that under the curvature operator bound condition on such a manifold, the weighted L 2 norm of a smooth p-form is non-increasing along the Ricci flow. The weighted L∞ norm is showed to have monotonicity property too

    Syntactic Complexities of Nine Subclasses of Regular Languages

    Get PDF
    The syntactic complexity of a regular language is the cardinality of its syntactic semigroup. The syntactic complexity of a subclass of the class of regular languages is the maximal syntactic complexity of languages in that class, taken as a function of the state complexity n of these languages. We study the syntactic complexity of suffix-, bifix-, and factor-free regular languages, star-free languages including three subclasses, and R- and J-trivial regular languages. We found upper bounds on the syntactic complexities of these classes of languages. For R- and J-trivial regular languages, the upper bounds are n! and ⌊e(n-1)!βŒ‹, respectively, and they are tight for n >= 1. Let C^n_k be the binomial coefficient ``n choose k''. For monotonic languages, the tight upper bound is C^{2n-1}_n. We also found tight upper bounds for partially monotonic and nearly monotonic languages. For the other classes of languages, we found tight upper bounds for languages with small state complexities, and we exhibited languages with maximal known syntactic complexities. We conjecture these lower bounds to be tight upper bounds for these languages. We also observed that, for some subclasses C of regular languages, the upper bound on state complexity of the reversal operation on languages in C can be met by languages in C with maximal syntactic complexity. For R- and J-trivial regular languages, we also determined tight upper bounds on the state complexity of the reversal operation
    • …
    corecore