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L2 P-FORMS AND RICCI FLOW WITH BOUNDED CURVATURE ON
MANIFOLDS

Baiyu Liu, Li Ma
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

liuby05@mails.tsinghua.edu.cn, lma@math.tsinghua.edu.cn

Abstract

In this paper, we study the evolution of L2 p-forms un-
der Ricci flow with bounded curvature on a complete non-
compact or a compact Riemannian manifold. We show
that under the curvature operator bound condition on such
a manifold, the weighted L2 norm of a smooth p-form is
non-increasing along the Ricci flow. The weighted L∞

norm is showed to have monotonicity property too.

Keywords: Ricci flow, forms, monotonicity

1 Introduction

In this paper we study the evolution of a p-form under the
Ricci flow introduced by R.Hamilton in 1982 ([8]). To
understand the change of the DeRham cohomology of the
manifold under Ricci flow, we need to compute the heat
equation for p-forms. Then we try to use some trick from
the paper [10] to get some monotonicity results.

By definition, the Ricci-Hamilton flow on a manifold
M of dimension n is the evolution equation for Rieman-
nian metrics:

∂tgij = −2Rij , on MT := M × [0, T )

where Rij is the Ricci tensor of the metric g := g(t) =
(gij) in local coordinates (xi) and T is the maximal exist-
ing time for the flow. Given an initial complete Rieman-
nian metric of bounded curvature, the existence of Ricci
flow with bounded sectional curvature on a complete non-
compact Riemannian manifold had been established by
Shi [13] in 1989. This is a very useful result in Rieman-
nian Geometry. Interestingly, the maximum principle of
heat equation is true on such a flow, see [13]. Then we
can easily show that the Ricci flow preserves the property
of nonnegative scalar curvature (see also [8]). Given a
smooth L2 p-form φ with compact support on a Rieman-
nian manifold (M, g). Recall that its L2 norm is defined
by

||φ||L2g = (
∫

M

|φ|2g(x)dvg)1/2,

and the L∞ norm is defined as

||φ||L∞g = sup
x∈M

|φ(x)|g(x)

Assume that dφ = 0. Let Φ = [φ] be the L2 cohomology
class of the form φ in (M, g). Define

||Φ||L2g = inf
ϕ∈Φ

||ϕ||L2g

and
||Φ||2(t) = ||Φ||L2g(t)

for the flow {g(t)}. It is well-known that ||Φ||L2g is a
norm on H1

dR(M,R). We denote by dg(x, y) the distance
of two points x and y in (M, g).

Our new results are the following

Theorem 1 Let (M, g0) be a compact or complete
noncompact Riemannian manifold with non-negative
scalar curvature. Assume that g(t) is a Ricci flow with
bounded curvature on [0, T ) with initial metric g(0) = g0

on M. For t ∈ [0, T ) the Ricci curvature satisfies

Rijη
iηj ≥ 0

and it holds the curvature pinching condition

W (t) +
2R(t)

(n− 1)(n− 2)
≤ 4

n− 2
L(t), (1)

where R(t) is the scalar curvature of the flow (g(t)), and

W (t) = sup
ξ

|Wijkl(t)ξijξkl|
ξijξij

,

(ξij = −ξji)

with

Wijkl = Rijkl −
1

n− 2
(Rikgjl −Rilgjk

+Rjlgik −Rjkgil)

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk).

is the Weyl conformal curvature tensor. L(t) is the
smallest eigenvalue of the matric Rij(t).

Then for a L2 p-form ξ , we have

||ξ||L2g(t) ≤ ||ξ||L2g(s), for t > s,

along the Ricci flow g(t). Similarly, we have the L∞

monotonicity of the p-form heat flow along the Ricci flow.
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It is easy to see that the L2 monotonicity gives the
monotonicity of De Rham cohomology class of a closed
p-form with compact support. So we shall not state the
corresponding result for De Rham cohomology class.
We remark that the pinching curvature condition in the
theorem above is not nature since it may not be preserved
along the Ricci flow. However, this is a classical condition
used in the book of Bochner and Yano [1] ( see page 89
of the [1]), which is quite similar to ours.

As a comparison, we would like to mention a pinching
result of G.Huisken [9]. It is well known that the curva-
ture tensor Rm = {Rijkl} of a Riemannian manifold can
be decomposed into three orthogonal components which
have the same symmetries as Rm:

Rm = W + V + U.

Here W = {Wijkl} is the Weyl conformal curvature
tensor, whereas V = {Vijkl} and U = {Uijkl} denote
the traceless Ricci part and the scalar curvature part re-
spectively. The following pointwise pinching condition
was proposed by Huisken in [9] (see also the works of
C.Margerin [11] and S.Nishikawa[12]):

|W |2+|V |2< δn|U |2, (2)

with

δ4 =
1
5
, δ5 =

1
10

, δn =
2

(n− 2)(n + 1)
, n ≥ 6,

(3)
and define the norm of a tensor:

|T |2= |Tijkl|2= gimgjngkpglqTijklTmnpq = TijklT
ijkl.

Then we have the following result of G.Huisken:

Theorem 2 Let n ≥ 4. Suppose (Mn, g0) is an n-
dimensional smooth compact Riemannian manifold with
positive and bounded scalar curvature and satisfies the
pointwise pinching condition (2).
Then Mn is diffeomorphic to the sphere Sn or a quotient
space of Sn by a group of fixed point free isometries in the
standard metric.

Note that the pinching curvature conditions (even the as-
sumption about behavior at infinity see [6] and [5]) in The-
orem 2 and Theorem 3 are preserved along the Ricci flow,
see [9] [11] and [12]. So our pinching condition in The-
orems 2 is more nature. We point out that the pinching
condition (2) gives positive curvature operator. Recently,
the deep work of C.Boehm and B.Wilking [2] proved the
same result for positive curvature operator case.

In the following we just try to give another way to un-
derstand the monotonicity of the norms of closed forms
under Ricci flow for general lower bound curvature oper-
ator case.

Theorem 3 Let n ≥ 4. Suppose (Mn, g0) is an n-
dimensional smooth compact Riemannian manifold.
Assume that g(t) is a Ricci flow with its curvature opera-
tor bounded from below by the constant 2k on [0, T ) with
initial metric g(0) = g0 on M.

Then for a L2 p-form ξ on (M, g0) , we have

||ekp(p−1)tξ||L2g(t) ≤ ||ekp(p−1)sξ||L2g(s), for t > s,

alone the Ricci flow g(t). Similarly, we have the L∞

monotonicity of the p-form heat flow along the Ricci flow.

Note that R.Hamilton [8] proved that the non-negative
curvature operator condition is preserved along the Ricci
flow on compact Riemannian manifolds. With the help of
the curvature decay estimate, one can show that similar
result to Theorem 3 is also true in complete non-compact
Riemannian manifolds. However, we omit the detail of
the proof here since the argument is similar to Theorem 3.

Theorem 4 Let n ≥ 4. Suppose (Mn, g0) is an n-
dimensional smooth complete noncompact Riemannian
manifold with bounded curvature operator and with
curvature decay condition as in [5]. Assume that g(t)
is a Ricci flow with its curvature operator bounded from
below by the constant 2k on [0, T ) with initial metric
g(0) = g0 on M.

Then for a L2 p-form ξ on (M, g0), we have

||ekp(p−1)tξ||L2g(t) ≤ ||ekp(p−1)sξ||L2g(s), for t > s,

alone the Ricci flow g(t). Similarly, we have the L∞

monotonicity of the p-form heat flow along the Ricci flow.

2 Basic formulae from Riemannian Geome-
try

Some basic materials in Riemannian geometry are stated
here, to the extent that will serve as computational no-
tations the later sections. Readers who are interested in
pursuing further along the line are referred to the book
by Yano and Bochner [1] and the paper by Huisken [9].
However, we make a caution that we use modern conven-
tion from the book of [4].

Consider an n-dimensional Riemannian manifold Mn

with the metric (gij). Denote by (gij) = (gij)−1 and Γi
jk

the Christoffel symbols.

For a scalar f(x), the covariant derivative of f(x) is
given by

f;j =
∂f

∂xj

and the second covariant derivative is given by

f;j;k =
∂2f

∂xj∂xk
− ∂f

∂xi
Γi

jk.
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Thus, we see that f;j;k = f;k;j .

However, for vectors and tensors, successive covari-
ant differentiations are not commutative in general. For
example, for a contravariant vector vi, we obtain

vi
;k;l − vi

;l;k = −vjRi
klj , (4)

where

Rl
ijk =

∂Γl
jk

∂xi
− ∂Γl

ik

∂xj
+ Γl

imΓm
jk − Γl

jmΓm
ik. (5)

Similarly, for a covariant vector vj , then we have

vk;i;j − vk;j;i = vlR
l
ijk , (6)

and if we take a general tensor T i
jk for example, then we

have

T i
jk;l;m − T i

jk;m;l = −T s
jkRi

lms + T i
skRs

lmj + T i
jsR

s
lmk.

(7)
Formulas (4),(6) and (7) are called the Ricci formulas.

From the curvature tensor Ri
jkl, we get, by contrac-

tion,
Rjk = Ri

ijk,

moreover, from Rjk, by multiplication by gjk and by con-
traction, we get

R = gjkRjk.

Rjk and R are called Ricci tensor and curvature scalar
of the metric g respectively.

From the definition (5) of Ri
jkl , it is easily seen that

Ri
jkl satisfies the following algebraic identities:

Ri
jkl = −Ri

jlk,

and
Ri

jkl + Ri
klj + Ri

ljk = 0. (8)

Consequently, from (8), we obtain Rjk = Rkj .

If we put
Rijkl = ghlR

h
ijk,

then Rijkl satisfies

Rijkl = −Rjikl,

and
Rijkl + Rjkil + Rkijl = 0. (9)

Equations (8) and (9) are called the first Bianchi
identities.

Moreover, applying the Ricci formula and calculating
the covariant compontents Rijkl, we get

Rijkl = −Rijlk,

and
Rijkl = Rklij .

It is also to be noted that

Ri
jkl;m + Ri

jlm;k + Ri
jmk;l = 0, (10)

which is called the second Bianchi identity. From
(10), we get

2Rs
l;s = R;l,

in which Rs
l = gisRil.

Denote by Rc = {Rij} and R the Ricci tensor and
scalar curvature. We can write the traceless Ricci part
V = {Vijkl} and the scalar curvature part U = {Uijkl} as
follows ( see also [9]):

Uijkl =
1

n(n− 1)
R(gikgjl − gilgjk),

Vijkl =
1

n− 2
(
◦
Rikgjl −

◦
Rilgjk −

◦
Rjkgil +

◦
Rjlgik),

where
◦
Rij = Rij −

1
n

Rgij .

If we let

◦
Rm = {

◦
Rijkl} = {Rijkl − Uijkl} = {Vijkl + Wijkl},

then
|
◦

Rm|2 = |W |2 + |V |2,

|U |2 =
2

n(n− 1)
R2,

|Rm|2 = |
◦

Rm|2 + |U |2.

3 Proof of Theorem 1

We first set up a key lemma which is useful in the proof of
all the Theorems above.

Lemma 1 Let ξi1...ip(x, t) be an anti-symmetric covari-
ant vector for all the time t, and satisfying the heat equa-
tion

∂ξi1...ip

∂t
= ∆d ξi1...ip

.

Then,

∂

∂t
|ξ|2 = ∆|ξ|2 − 2ξi1...ip;jξi1...ip;j (11)

−p(p− 1)ξiji1...ip−2R
ij

klξ
kli1...ip−2 .

Here ∆d = δd + dδ is the Hodge-DeRham Laplacian
of g(t), ∆ is the rough Laplacian in the sense of [4], and
Rij

kl = gipgjqRpqkl.
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Proof: Recall that for a covariant vector ξi1...ip
, we

have

∆d ξi1...ip
= gjkξi1...ip;j;k −

1...p∑
s

ξi1...is−1ais+1...ip
Ra

is

−
1...p∑
s<t

ξi1...is−1ais+1...it−1bit+1...ipRab
isit

,

(see page 74 in [1], and please note that we have used the
same notations as in [1]).

Along the Ricci-Hamilton flow, we have

∂gij

∂t
= 2Rij .

Then,

∂

∂t
|ξ|2 =

∂

∂t
(gi1k1 . . . gipkpξi1...ip

ξk1...kp
)

=
1...p∑

a

gi1k1 . . . gia−1ka−12Riakagia+1ka+1

. . . gipkpξi1...ip
ξk1...kp

+2gi1k1 . . . gipkp(∆d ξk1...kp
)ξi1...ip

= 2pRi1k1gi2k2 . . . gipkpξi1...ip
ξk1...kp

+2gi1k1 . . . gipkp(∆ξk1...kp)ξi1...ip

−2
1...p∑

s

ξk1...kpξk1...ks−1aks+1...kp
Ra

ks

−2
1...p∑
s<t

ξk1...ks−1aks+1...kt−1bkt+1...kp

Rab
kskt

ξk1...kp

= 2pRijξ
ji2...ipξi

i2...ip
(12)

+2ξk1...kp(4ξk1...kp
)

−2pξji2...ip−1ξii2...ip−1R
i
j

−p(p− 1)ξiji1...ip−2R
ij

klξ
kli1...ip−2 .

By calculations, we obtain

∆|ξ|2 = 2(ξi1...ip∆ξi1...ip + ξi1...ip;jξi1...ip;j), (13)

for which ∆f = gijf;i;j , (f is a scalar field) .

Putting (13) into (12), we get (11)

∂

∂t
|ξ|2 = ∆|ξ|2 − 2ξi1...ip;jξi1...ip;j

−p(p− 1)ξiji1...ip−2R
ij

klξ
kli1...ip−2 .

We are done since this is what we wanted in the
lemma.

We now give a proof of Theorem 1.

Proof of Theorem 1: Using the curvature decompo-
sition we have the following:

− ξiji1...ip−2R
ij

klξ
kli1...ip−2

= −ξiji1...ip−2Rijklξ
kl

i1...ip−2

= ξiji1...ip−2ξkl
i1...ip−2

(−Wijkl

+
R(t)

(n− 1)(n− 2)
(gikgjl − gilgjk)

− 1
n− 2

(Rikgjl −Rilgjk + Rjlgik −Rjkgil))

= −Wijklξ
iji1...ip−2ξkl

i1...ip−2

− 4
n− 2

Rilξ
iji1...ip−2ξl

ji1...ip−2

+
2R(t)

(n− 1)(n− 2)
ξiji1...ip−2ξiji1...ip−2

≤ (W (t)− 4
n− 2

L(t)

+
2R(t)

(n− 1)(n− 2)
)ξi1...ipξi1...ip

Recall that the assumption (1)

W (t) +
2R(t)

(n− 1)(n− 2)
≤ 4

n− 2
L(t),

for (11) , and we derive ∂
∂t |ξ|

2 ≤ ∆|ξ|2. Then, Lemma
4 in [10] implies the L2 monotone result, and the Maxi-
mum principle [13] implies the L∞ monotonicity. This
completes the proof of Theorem 1.

4 Proof of Theorem 3

In this section, we plan to prove Theorems 3.
Proof of Theorem 3: First, the existence of the heat

flow of the p-form along the Ricci flow follows almostly
from Gaffney [7], so we omit the detail. Then we note
that the L2 property of the p-form ξ is preserved along
the Ricci flow. Note that when k = 0, the positivity of
curvature operator is preserved as long as the solution of
the evolution equation for the Ricci-Hamilton flow exists.
Recall that our curvature operator is bounded from below
along the Ricci flow. Then we have,

ξiji1...ip−2R
ij

klξ
kli1...ip−2 ≥ 2k|ξ|2, for t ∈ [0, T ) ,

which in turn, by the equation (11), gives us that

∂

∂t
|ξ|2 ≤ ∆|ξ|2 − 2kp(p− 1)|ξ|2.

In the other word, we have

∂

∂t
|ekp(p−1)tξ|2 ≤ ∆|ekp(p−1)tξ|2.

Hence, using the same argument as in ([10]), we have
proved the monotonicity of the weighted L2 norm of the
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p-form. By the Maximum principle [13] we have the
monotonicity of the L∞ norm of the p-form, and then the
result of Theorem 3 has been completely proved.
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